Skip to main content
Log in

Challenges of Bringing Next Generation Sequencing Technologies to Clinical Molecular Diagnostic Laboratories

  • Review
  • Published:
Neurotherapeutics

Abstract

Molecular diagnosis of complex dual genome mitochondrial disorders is a challenge. It requires the identification of deleterious mutations in one of the ~1,500 nuclear genes and the mitochondrial genome. If the molecular defect is in the mitochondrial genome, quantification of degree of mutation load (heteroplasmy) in affected tissues is important. Due to the extreme clinical and genetic heterogeneity, conventional sequence analysis of the candidate genes one-by-one is impractical, if not impossible. The newly developed massively parallel next generation sequencing (NGS) technique, that allows simultaneous sequence analysis of multiple target genes, when appropriately validated with deep coverage and proper quality controls, can be used as an effective comprehensive diagnostic approach in CLIA certified clinical laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Calvo S, et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet 2006;38(5):576–582.

    Article  PubMed  CAS  Google Scholar 

  2. Scharfe C, et al. Mapping gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput Biol 2009;5(4):e1000374.

    Article  PubMed  Google Scholar 

  3. Dimmock D, et al. A quantitative evaluation of the mitochondrial DNA depletion syndrome. Clin Chem 2010;56(7):1119–27.

    Article  PubMed  CAS  Google Scholar 

  4. Shanske S, Wong LJ. Molecular analysis for mitochondrial DNA disorders. Mitochondrion 2004;4(5–6):403–15.

    Article  PubMed  CAS  Google Scholar 

  5. Wong LJ, Boles RG. Mitochondrial DNA analysis in clinical laboratory diagnostics. Clin Chim Acta 2005;354(1–2):1–20.

    Article  PubMed  CAS  Google Scholar 

  6. Wong L-JC. Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev 2010;16(2):154–162.

    Article  PubMed  Google Scholar 

  7. Koopman WJ, Willems PH, Smeitink JA. Monogenic mitochondrial disorders. N Engl J Med 2012;366(12):1132–41.

    Article  PubMed  CAS  Google Scholar 

  8. Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2001;2(5):342–52.

    Article  PubMed  CAS  Google Scholar 

  9. Calvo SE, et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med 2012;4(118):118ra10.

    Article  PubMed  Google Scholar 

  10. Casey JP, et al. Identification of a mutation in LARS as a novel cause of infantile hepatopathy. Mol Genet Metab 2012;106(3):351–8.

    Article  PubMed  CAS  Google Scholar 

  11. Galmiche L, et al. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum Mutat 2011;32(11):1225–31.

    Article  PubMed  CAS  Google Scholar 

  12. Gandre-Babbe S, van der Bliek AM. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 2008;19(6):2402–12.

    Article  PubMed  CAS  Google Scholar 

  13. Gerards M, et al. Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain 2011;134(Pt 1):210–9.

    Article  PubMed  Google Scholar 

  14. Ghezzi D, et al. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 2012;90(6):1079–87.

    Article  PubMed  CAS  Google Scholar 

  15. Glazov EA, et al. Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia. PLoS Genet 2011;7(3):e1002027.

    Article  PubMed  CAS  Google Scholar 

  16. Gotz A, et al. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 2011;88(5):635–42.

    Article  PubMed  CAS  Google Scholar 

  17. Haack TB, et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 2010;42(12):1131–4.

    Article  PubMed  CAS  Google Scholar 

  18. Majczenko K, et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet 2012;91(2):365–71.

    Article  PubMed  CAS  Google Scholar 

  19. Mayr JA, et al. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am J Hum Genet 2012;90(2):314–20.

    Article  PubMed  CAS  Google Scholar 

  20. Pierce SB, et al. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci USA 2011;108(16):6543–8.

    Article  PubMed  CAS  Google Scholar 

  21. Rotig A. Human diseases with impaired mitochondrial protein synthesis. Biochim Biophys Acta 2011;1807(9):1198–205.

    Article  PubMed  Google Scholar 

  22. Sloan JL, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nat Genet 2011;43(9):883–6.

    Article  PubMed  CAS  Google Scholar 

  23. Spiegel R et al. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet 2012;90(3):518–23.

    Article  PubMed  CAS  Google Scholar 

  24. Steenweg ME et al. Leukoencephalopathy with thalamus and brainstem involvement and high lactate 'LTBL' caused by EARS2 mutations. Brain 2012;135(Pt 5):1387–94.

    Article  PubMed  Google Scholar 

  25. Tucker EJ, et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab 2011;14(3):428–34.

    Article  PubMed  CAS  Google Scholar 

  26. Watkins D, et al. Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband. J Med Genet 2011;48(9):590–2.

    Article  PubMed  CAS  Google Scholar 

  27. Wortmann SB, et al. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet 2012;44(7):797–802.

    Article  PubMed  CAS  Google Scholar 

  28. Schrijver I, et al. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the association for molecular pathology. J Mol Diagn 2012;14(6):525–40.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang W, Cui H, Wong LJ. Application of Next Generation Sequencing to Molecular Diagnosis of Inherited Diseases. Top Curr Chem, 2012 PMID 22576358.

  30. Zhang W, Cui H, Wong LJ. Comprehensive 1-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin Chem 2012;58:1322–31.

    Article  PubMed  CAS  Google Scholar 

  31. Gargis AS, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol 2012;30(11):1033–6.

    Article  PubMed  CAS  Google Scholar 

  32. Tang S, et al. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization. Methods Mol Biol 2012;837:259–79.

    Article  PubMed  CAS  Google Scholar 

  33. Bai RK, Wong LJ. Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 2004;50(6):996–1001.

    Article  PubMed  CAS  Google Scholar 

  34. Venegas V, Halberg MC. Quantification of mtDNA mutation heteroplasmy (ARMS qPCR). Methods Mol Biol 2012;837:313–26.

    Article  PubMed  CAS  Google Scholar 

  35. Chinault AC, et al. Application of dual-genome oligonucleotide array-based comparative genomic hybridization to the molecular diagnosis of mitochondrial DNA deletion and depletion syndromes. Genet Med 2009;11(7):518–26.

    Article  PubMed  CAS  Google Scholar 

  36. Wang J, et al. Targeted array CGH as a valuable molecular diagnostic approach: experience in the diagnosis of mitochondrial and metabolic disorders. Mol Genet Metab 2012;106(2):221–30.

    Article  PubMed  CAS  Google Scholar 

  37. Wong LJ, et al. Utility of oligonucleotide array-based comparative genomic hybridization for detection of target gene deletions. Clin Chem 2008;54(7):1141–8.

    Article  PubMed  CAS  Google Scholar 

  38. Landsverk ML, Cornwell ME, Palculict ME. Sequence analysis of the whole mitochondrial genome and nuclear genes causing mitochondrial disorders. Methods Mol Biol 2012;837:281–300.

    Article  PubMed  CAS  Google Scholar 

  39. Ware SM, et al. Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes. J Med Genet 2009;46(5):308–14.

    Article  PubMed  CAS  Google Scholar 

  40. Lacbawan F, et al. Clinical heterogeneity in mitochondrial DNA deletion disorders: a diagnostic challenge of Pearson syndrome. Am J Med Genet 2000;95(3):266–8.

    Article  PubMed  CAS  Google Scholar 

  41. Brautbar A, et al. The mitochondrial 13513G>A mutation is associated with Leigh disease phenotypes independent of complex I deficiency in muscle. Mol Genet Metab 2008;94(4):485–90.

    Article  PubMed  CAS  Google Scholar 

  42. Wang J, et al. Two mtDNA mutations 14487T>C (M63V, ND6) and 12297T>C (tRNA Leu) in a Leigh syndrome family. Mol Genet Metab 2009;96(2):59–65.

    Article  PubMed  CAS  Google Scholar 

  43. Kara B, et al. Whole mitochondrial genome analysis of a family with NARP/MILS caused by m.8993T>C mutation in the MT-ATP6 gene. Mol Genet Metab, 2012;107:389–93.

    Google Scholar 

  44. Zaragoza MV, et al. Mitochondrial DNA variant discovery and evaluation in human cardiomyopathies through next-generation sequencing. PLoS One 2010;5(8):e12295.

    Article  PubMed  Google Scholar 

  45. Cui H, et al. Comprehensive next generation sequence analyses of the entire mitochondrial genome reveal new insights into the molecular diagnosis of mitochondrial DNA disorders. Genetics in Medicine, 2012. (in press)

  46. Gnirke A, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 2009;27(2):182–9.

    Article  PubMed  CAS  Google Scholar 

  47. Hirano M, et al. Apparent mtDNA heteroplasmy in Alzheimer's disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes. Proc Natl Acad Sci USA 1997;94(26):14894–9.

    Article  PubMed  CAS  Google Scholar 

  48. Parfait B, et al. Co-amplification of nuclear pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations. Biochem Biophys Res Commun 1998;247(1):57–9.

    Article  PubMed  CAS  Google Scholar 

  49. Bennett ST, et al. Toward the $1000 human genome. Pharmacogenomics 2005; 6(4):373–382.

    Article  PubMed  CAS  Google Scholar 

  50. Margulies M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005;437(7057):376–380.

    PubMed  CAS  Google Scholar 

  51. Rothberg JM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011;475(7356):348–352.

    Article  PubMed  CAS  Google Scholar 

  52. Shendure J, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 2005;309(5741):1728–1732.

    Article  PubMed  CAS  Google Scholar 

  53. Haas RH, et al. Mitochondrial disease: a practical approach for primary care physicians. Pediatrics 2007;120(6):1326–33.

    Article  PubMed  Google Scholar 

  54. Haas RH, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 2008;94(1):16–37.

    Article  PubMed  CAS  Google Scholar 

  55. Wong L-JC, et al. Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab 2010;100(2):111–117.

    Article  PubMed  CAS  Google Scholar 

  56. Wang J, et al. An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory's experience. Genet Med 2012;14(6):620–6.

    Article  PubMed  Google Scholar 

  57. Zhang VW, Wang J. Determination of the clinical significance of an unclassified variant. Methods Mol Biol 2012;837:337–48.

    Article  PubMed  CAS  Google Scholar 

  58. Tang S, et al. Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion 2010;10(4):350–7.

    Article  PubMed  CAS  Google Scholar 

  59. Goto H, et al. Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study. Genome Biol 2011;12(6):R59.

    Article  PubMed  CAS  Google Scholar 

  60. He Y, et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 2010;464(7288):610–4.

    Article  PubMed  CAS  Google Scholar 

  61. Li M, et al. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 2010;87(2):237–49.

    Article  PubMed  CAS  Google Scholar 

  62. Schonberg A, et al. High-throughput sequencing of complete human mtDNA genomes from the Caucasus and West Asia: high diversity and demographic inferences. Eur J Hum Genet 2011;19(9):988–94.

    Article  PubMed  Google Scholar 

  63. Calvo SE, et al. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 2010;42(10):851–8.

    Article  PubMed  CAS  Google Scholar 

  64. Vasta V, et al. Next-generation sequencing for mitochondrial diseases: A wide diagnostic spectrum. Pediatr Int 2012;54(5):585–601.

    Article  PubMed  CAS  Google Scholar 

  65. Tucker EJ, et al. Next-generation sequencing in molecular diagnosis: NUBPL mutations highlight the challenges of variant detection and interpretation. Hum Mutat 2012;33(2):411–8.

    Article  PubMed  CAS  Google Scholar 

  66. Richards CS, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 2008;10(4):294–300.

    Article  PubMed  CAS  Google Scholar 

  67. MacArthur DG, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 2012;335(6070):823–8.

    Article  PubMed  CAS  Google Scholar 

  68. Landsverk ML, et al. Diagnostic approaches to apparent homozygosity. Genet Med 2012;14(10):877-82.

    Article  PubMed  CAS  Google Scholar 

  69. Milone M, Benarroch EE, Wong LJ. POLG-related disorders: defects of the nuclear and mitochondrial genome interaction. Neurology 2011;77(20):1847–52.

    Article  PubMed  Google Scholar 

  70. Tang S., et al. Mitochondrial DNA polymerase gamma mutations: an ever expanding molecular and clinical spectrum. J Med Genet 2011;48(10):669–81.

    Article  PubMed  CAS  Google Scholar 

  71. Milone M, et al. Novel POLG splice site mutation and optic atrophy. Arch Neurol 2011; 68(6):806–11.

    Article  PubMed  Google Scholar 

  72. Milone M, et al. Mitochondrial disorder with OPA1 mutation lacking optic atrophy. Mitochondrion 2009;9(4):279–81.

    Article  PubMed  CAS  Google Scholar 

  73. Milone M, et al. Sensory ataxic neuropathy with ophthalmoparesis caused by POLG mutations. Neuromuscul Disord 2008;18(8):626–32.

    Article  PubMed  Google Scholar 

  74. Yarham JW, et al. A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Hum Mutat 2011;32(11):1319–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Jun C. Wong.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, LJ.C. Challenges of Bringing Next Generation Sequencing Technologies to Clinical Molecular Diagnostic Laboratories. Neurotherapeutics 10, 262–272 (2013). https://doi.org/10.1007/s13311-012-0170-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-012-0170-5

Keywords

Navigation