Skip to main content
Log in

Sigma-1R Agonist Improves Motor Function and Motoneuron Survival in ALS Mice

  • Original Article
  • Published:
Neurotherapeutics

Abstract

Amyotrophic lateral sclerosis is a neurodegenerative disorder characterized by progressive weakness, muscle atrophy, and paralysis due to the loss of upper and lower motoneurons (MNs). Sigma-1 receptor (sigma-1R) activation promotes neuroprotection after ischemic and traumatic injuries to the central nervous system. We recently reported that sigma-1R agonist (PRE-084) improves the survival of MNs after root avulsion injury in rats. Moreover, a mutation of the sigma-1R leading to frontotemporal lobar degeneration/amyotrophic lateral sclerosis (ALS) was recently described in human patients. In the present study, we analyzed the potential therapeutic effect of the sigma-1R agonist (PRE-084) in the SOD1G93A mouse model of ALS. Mice were daily administered with PRE-084 (0.25 mg/kg) from 8 to 16 weeks of age. Functional outcome was assessed by electrophysiological tests and computerized analysis of locomotion. Histological, immunohistochemical analyses and Western blot of the spinal cord were performed. PRE-084 administration from 8 weeks of age improved the function of MNs, which was manifested by maintenance of the amplitude of muscle action potentials and locomotor behavior, and preserved neuromuscular connections and MNs in the spinal cord. Moreover, it extended survival in both female and male mice by more than 15 %. Delayed administration of PRE-084 from 12 weeks of age also significantly improved functional outcome and preservation of the MNs. There was an induction of protein kinase C-specific phosphorylation of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor in SOD1G93A animals, and a reduction of the microglial reactivity compared with untreated mice. PRE-084 exerts a dual therapeutic contribution, modulating NMDA Ca2+ influx to protect MNs, and the microglial reactivity to ameliorate the MN environment. In conclusion, sigma-1R agonists, such as PRE-084, may be promising candidates for a therapeutical strategy of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009;4:3.

    Article  PubMed  Google Scholar 

  2. Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;364:362.

    PubMed  CAS  Google Scholar 

  3. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 1995;92:689-693.

    Article  PubMed  CAS  Google Scholar 

  4. Bosco DA, Morfini G, Karabacak NM, et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 2010;13:1396-1403.

    Article  PubMed  CAS  Google Scholar 

  5. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nature Rev Neurosci 2006;7:710-723.

    Article  CAS  Google Scholar 

  6. Alonso G, Phan V-L, Guillemain I, et al. Immunocytochemical localization of the sigma1 receptor in the adult rat central nervous system. Neuroscience 2000;97:155-170.

    Article  PubMed  CAS  Google Scholar 

  7. Hayashi T, Su T-P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007;131:596-610.

    Article  PubMed  CAS  Google Scholar 

  8. Gekker G, Hu S, Sheng WS, Rock RB, Lokensgard JR, Peterson PK. Cocaine-induced HIV-1 expression in microglia involves sigma-1 receptors and transforming growth factor-beta1. Int Immunopharmacol 2006;6:1029-1033.

    Article  PubMed  CAS  Google Scholar 

  9. Palacios G, Muro A, Vela JM, et al. Immunohistochemical localization of the sigma1-receptor in oligodendrocytes in the rat central nervous system. Brain Res 2003;961:92-99.

    Article  PubMed  CAS  Google Scholar 

  10. Penas C, Pascual-Font A, Mancuso R, Forés J, Casas C, Navarro X. Sigma receptor agonist 2-(4-morpholinethyl)1 phenylcyclohexanecarboxylate (Pre084) increases GDNF and BiP expression and promotes neuroprotection after root avulsion injury. J Neurotrauma 2011;28:831-840.

    Article  PubMed  Google Scholar 

  11. Morin-Surun MP, Collin T, Denavit-Saubié M, Baulieu EE, Monnet FP. Intracellular sigma1 receptor modulates phospholipase C and protein kinase C activities in the brainstem. Proc Natl Acad Sci USA 1999;96:8196-8199.

    Article  PubMed  CAS  Google Scholar 

  12. Mavlyutov TA, Ruoho AE. Ligand-dependent localization and intracellular stability of sigma-1 receptors in CHO-K1 cells. J Mol Signal 2007;2:8.

    Article  PubMed  Google Scholar 

  13. Hall AA, Herrera Y, Ajmo CT Jr., Cuevas J, Pennypacker KR. Sigma receptors suppress multiple aspects of microglial activation. Glia 2009;57:744-754.

    Article  PubMed  Google Scholar 

  14. Zhang X-J, Liu L-L, Jiang S-X, Zhong Y-M, Yang X-L. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells. Neuroscience 2011;177:12-22.

    Article  PubMed  CAS  Google Scholar 

  15. Maurice T, Su T-P. The pharmacology of sigma-1 receptors. Pharmacol Therap 2009;124:195-206.

    Article  CAS  Google Scholar 

  16. Aydar E, Palmer CP, Klyachko VA, Jackson MB. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 2002;34:399-410.

    Article  PubMed  CAS  Google Scholar 

  17. Tuerxun T, Numakawa T, Adachi N, et al. SA4503, a sigma-1 receptor agonist, prevents cultured cortical neurons from oxidative stress-induced cell death via suppression of MAPK pathway activation and glutamate receptor expression. Neurosci Lett 2010;469:303-308.

    Article  PubMed  CAS  Google Scholar 

  18. Guzmán-Lenis M-S, Navarro X, Casas C. Selective sigma receptor agonist 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE084) promotes neuroprotection and neurite elongation through protein kinase C (PKC) signaling on motoneurons. Neuroscience 2009;162:31-38.

    Article  PubMed  Google Scholar 

  19. Allahtavakoli M, Jarrott B. Sigma-1 receptor ligand PRE-084 reduced infarct volume, neurological deficits, pro-inflammatory cytokines and enhanced anti-inflammatory cytokines after embolic stroke in rats. Brain Res Bull 2011;85:219-224.

    Article  PubMed  CAS  Google Scholar 

  20. Ajmo CT, Vernon DOL, Collier L, Pennypacker KR, Cuevas J. Sigma receptor activation reduces infarct size at 24 hours after permanent middle cerebral artery occlusion in rats. Curr Neurovasc Res 2006;3:89-98.

    Article  PubMed  CAS  Google Scholar 

  21. Luty AA, Kwok JBJ, Dobson-Stone C, et al. Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 2010;68:639-649.

    Article  PubMed  CAS  Google Scholar 

  22. Al-Saif A, Al-Mohanna F, Bohlega S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 2011;70:913-919.

    Article  PubMed  CAS  Google Scholar 

  23. Mancuso R, Santos-Nogueira E, Osta R, Navarro X. Electrophysiological analysis of a murine model of motoneuron disease. Clin Neurophysiol 2011;122:1660-1670.

    Article  PubMed  Google Scholar 

  24. Valero-Cabré A, Navarro X. H reflex restitution and facilitation after different types of peripheral nerve injury and repair. Brain Res 2001;919:302-312.

    Article  PubMed  Google Scholar 

  25. Mancuso R, Oliván S, Osta R, Navarro X. Evolution of gait abnormalities in SOD1(G93A) transgenic mice. Brain Res 2011;1406:65-73.

    Article  PubMed  CAS  Google Scholar 

  26. Abercrombie M. Estimation of nuclear population from microtome sections. Anat Rec 1946;94:239-247.

    Article  PubMed  CAS  Google Scholar 

  27. Moreno-Igoa M, Calvo AC, Penas C, et al. Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy. J Mol Med 2010;88:297-308.

    Article  PubMed  CAS  Google Scholar 

  28. Penas C, Casas C, Robert I, Forés J, Navarro X. Cytoskeletal and activity-related changes in spinal motoneurons after root avulsion. J Neurotrauma 2009;26:763-779.

    Article  PubMed  Google Scholar 

  29. Fischer LR, Culver DG, Tennant P, et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 2004;185:232-240.

    Article  PubMed  Google Scholar 

  30. Mohajeri MH, Figlewicz DA, Bohn MC. Selective loss of alpha motoneurons innervating the medial gastrocnemius muscle in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 1998;150:329-336.

    Article  PubMed  CAS  Google Scholar 

  31. Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 2009;106:18809-18814.

    Article  PubMed  CAS  Google Scholar 

  32. McHanwell S, Biscoe TJ. The localization of motoneurons supplying the hindlimb muscles of the mouse. Philos Trans R Soc Lond B Biol Sci 1981;293:477-508.

    Article  PubMed  CAS  Google Scholar 

  33. Diaz-Amarilla P, Olivera-Bravo S, Trias E, et al. Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 2011;108:18126-18131.

    Article  PubMed  CAS  Google Scholar 

  34. Yamanaka K, Boillee S, Roberts EA, et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci USA 2008;105:7594-7599.

    Article  PubMed  CAS  Google Scholar 

  35. Sanagi T, Yuasa S, Nakamura Y, et al. Appearance of phagocytic microglia adjacent to motoneurons in spinal cord tissue from a presymptomatic transgenic rat model of amyotrophic lateral sclerosis. J Neurosci Res 2010;88:2736-2746.

    PubMed  CAS  Google Scholar 

  36. Haidet-Phillips AM, Hester ME, Miranda CJ, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 2011;29:824-828.

    Article  PubMed  CAS  Google Scholar 

  37. Azzouz M, Leclerc N, Gurney M, Warter JM, Poindron P, Borg J. Progressive motor neuron impairment in an animal model of familial amyotrophic lateral sclerosis. Muscle Nerve 1997;20:45-51.

    Article  PubMed  CAS  Google Scholar 

  38. Raoul C, Abbas-Terki T, Bensadoun J-C, et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 2005;11:423-428.

    Article  PubMed  CAS  Google Scholar 

  39. Turner B, Talbot K. Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 2008;85:94-134.

    Article  PubMed  CAS  Google Scholar 

  40. Gurney ME, Cutting FB, Zhai P, et al. Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 1996;39:147-157.

    Article  PubMed  CAS  Google Scholar 

  41. Lockhart BP, Soulard P, Benicourt C, Privat A, Junien JL. Distinct neuroprotective profiles for sigma ligands against N-methyl-D-aspartate (NMDA), and hypoxia-mediated neurotoxicity in neuronal culture toxicity studies. Brain Res 1995;675:110-120.

    Article  PubMed  CAS  Google Scholar 

  42. Katnik C, Guerrero WR, Pennypacker KR, Herrera Y, Cuevas J. Sigma-1 receptor activation prevents intracellular calcium dysregulation in cortical neurons during in vitro ischemia. J Pharmacol Exp Ther 2006;319:1355-1365.

    Article  PubMed  CAS  Google Scholar 

  43. Antonini V, Marrazzo A, Kleiner G, et al. Anti-amnesic and neuroprotective actions of the sigma-1 receptor agonist (-)-MR22 in rats with selective cholinergic lesion and amyloid infusion. J Alzheimers Dis 2011;24:569-586.

    PubMed  CAS  Google Scholar 

  44. Mancuso R, Oliván S, Mancera P, et al. Effect of genetic background on onset and disease progression in the SOD1-G93A model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2012;13:302-310.

    Article  PubMed  CAS  Google Scholar 

  45. Grosskreutz J, Van Den Bosch L, Keller BU. Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 2010;47:165-174.

    Article  PubMed  CAS  Google Scholar 

  46. Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochimica Biophysica Acta 2006;1762:1068-1082.

    Article  Google Scholar 

  47. Alexianu ME, Ho BK, Mohamed AH, La Bella V, Smith RG, Appel SH. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1994;36:846-858.

    Article  PubMed  CAS  Google Scholar 

  48. Texidó L, Hernández S, Martín-Satué M, et al. Sera from amyotrophic lateral sclerosis patients induce the non-canonical activation of NMDA receptors "in vitro." Neurochem Int 2011;59:954-964.

    Article  PubMed  Google Scholar 

  49. Sunico CR, Domínguez G, García-Verdugo JM, Osta R, Montero F, Moreno-López B. Reduction in the motoneuron inhibitory/excitatory synaptic ratio in an early-symptomatic mouse model of amyotrophic lateral sclerosis. Brain Pathol 2011;21:1-15.

    Article  PubMed  CAS  Google Scholar 

  50. Henkel JS, Beers DR, Zhao W, Appel SH. Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 2009;4:389-398.

    Article  PubMed  Google Scholar 

  51. Sargsyan SA, Blackburn DJ, Barber SC, et al. A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function. BMC Neuroscience 2011;12:91.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Red de Terapia Celular (TERCEL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) funds, the Fondo de Investigación Sanitaria of Spain (grant no. PI1001787); the Ministerio de Ciencia e Innovación of Spain (grant SAF2009-12495), FEDER funds, and Action COST-B30 of the EC. We thank the technical help of Jessica Jaramillo and Marta Morell. RM is recipient of a predoctoral fellowship from the Ministerio de Educación of Spain.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Navarro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancuso, R., Oliván, S., Rando, A. et al. Sigma-1R Agonist Improves Motor Function and Motoneuron Survival in ALS Mice. Neurotherapeutics 9, 814–826 (2012). https://doi.org/10.1007/s13311-012-0140-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-012-0140-y

Keywords

Navigation