Skip to main content
Log in

Structure and function of neuronal dendrites

  • Review article
  • Published:
e-Neuroforum

Abstract

Neurons represent the cellular substrate for information processing in the nervous system. Already around 1900 the Spanish neuroanatomist Ramón y Cajal proposed that neurons possess two discrete functional domains, the axonal and the somatodendritic compartment. Cajal established the foundation for the neuron doctrine by suggesting dendrites to be the synaptic input regions of neurons, and that information processing travels from dendritic regions towards axon terminals and output synapses (“the theory of dynamic polarization”, Shepherd, 1991). Despite a number of exceptions, for most neurons this rule prevails to the present. Therefore, dendritic architecture has two fundamental functions in the nervous system. First dendrites expand the receptive surface of neurons, and their shape dictates how many and which presynaptic neurons can contact a postsynaptic dendritic arbor. Thus, dendritic structure influences the number of synapses as well as the wiring logic within neuronal networks. Second dendritic structure impacts the temporal and spatial integration of postsynaptic potentials. Accordingly, in different types of neurons with different functions dendritic gestalt differs significantly, and dendritic architecture often serves to classify neuron types. In most cases, however, the specific function of dendritic architecture remains largely elusive. Dendritic structure analysis is further bedeviled by dendrites exhibiting voltage-gated ion channels which themselves vastly modify function and computing power. Although a multitude of neurodevelopmental and neurodegenerative disorders coincides with dendritic defects, it often remains unclear whether these structural defects are the cause or a consequence of the dysfunction. Therefore, on the one hand it is important to determine the contribution of dendritic structure to the function of different types of healthy neurons. On the other hand the question arises whether dendritic defects impact neuronal function qualitatively and to what degree of dendritic defect neuronal function can be maintained. This article will first summarize basic functions of passive dendritic architecture which applies for most neurons but confers variable characteristics to different types of neurons. It will be discussed how the location of input synapses in a passive electrical structure affects the integration of postsynaptic potentials. Then principles will be introduced how this localization-dependence of synaptic inputs into dendrites can be compensated for. And finally, an identified Drosophila motoneuron will serve as an example that at least in specific types of neurons basic function can be maintained with a minimum number of dendrites and input synapses. By contrast, in this example dendritic structure is imperative for fine tuning of adaptive behavioral functions which are essential for survival and reproduction. These findings will then be discussed in the context of other neuronal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fiala JC, Spacek J, Harris KM (2008) Dendritic structure. In: Stuart G, Sprouston N, Häusser M (eds) Dendrites. Oxford University Press, Oxford, pp 1–34

    Google Scholar 

  2. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Filho JW, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and non-neuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541

    Article  PubMed  Google Scholar 

  3. Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortext 10(10):981–991

    Article  CAS  Google Scholar 

  4. Kulkarni VA, Firestein BL (2012) The dendritic tree and brain disorders. Mol Cell Neurosci 50:10–20

    Article  CAS  PubMed  Google Scholar 

  5. Mel BW (2008) Why have dendrites? A computational perspective. In: Stuart G, Sprouston N, Häusser M (eds) Dendrites. Oxford University Press, New York, pp 421–437

    Google Scholar 

  6. Purves D, Hume RI (1981) The relation of postsynaptic geometry to the number of presynaptic axons that innervate autonomic ganglion cells. J Neurosci 1(5):441–452

    CAS  PubMed  Google Scholar 

  7. Wen Q, Stepanyants A, Elston GN, Grosberg AY, Chklovskii DB (2009) Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proc Natl Acad Sci U S A 106(30):12536–12541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huerta-Ocampo I, Mena-Segovia J, Bolam JP (2014) Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Strut Funct 219:1787–1800

    Article  Google Scholar 

  9. Sprouston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nature Rev Neurosci 9:206–221

    Article  Google Scholar 

  10. Branco T, Häusser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20(4):494–502

    Article  CAS  PubMed  Google Scholar 

  11. Häusser M, Sprouston N, Stuart G (2000) Diversity and dynamics of dendritic signaling. Science 290:739–744

    Article  PubMed  Google Scholar 

  12. Koch C, Segev I (2000) The role of single neurons in information processing. Nat Neurosci 3:1171–1177

    Article  CAS  PubMed  Google Scholar 

  13. Rall W (1961) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30:1138–1168

    Google Scholar 

  14. Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30:1138–1168

    CAS  PubMed  Google Scholar 

  15. Rall W (1964) In: Reiss RF (ed) Neural Theory and Modeling. Standfort University Press, Palo Alto, pp 5–35

    Google Scholar 

  16. Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 190:181–190

    Article  Google Scholar 

  17. Cuntz H, Borst A, Segev I (2007) Optimization principles of dendritic structure. Theor Biol Med Model 8:4–21

    Google Scholar 

  18. Häusser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290(5492):739–744

    Article  PubMed  Google Scholar 

  19. Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hipoocampal pyramidal neuron. Nat Neurosci 8:895–903

    Article  Google Scholar 

  20. Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89(3):847–885

    Article  CAS  PubMed  Google Scholar 

  21. London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532

    Article  CAS  PubMed  Google Scholar 

  22. Fyffe RE (1991) Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat. J Neurophysiol 65(5):1134–1149

    CAS  PubMed  Google Scholar 

  23. Kühn C, Duch C (2013) Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron. Eur J Neurosci 37(6):860–875

    Article  Google Scholar 

  24. Heckman CJ, Lee RH, Brownstone RM (2003) Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior. Trends Neurosci 26(12):688–695

    Article  CAS  PubMed  Google Scholar 

  25. Worrell JW, Levine RB (2008) Characterization of voltage-dependent Ca2+ currents in identified Drosophila motoneurons in situ. J Neurophysiol 100(2):868–878

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ryglewski S, Lance K, Levine RB, Duch C (2012) Ca(v)2 channels mediate low and high voltage-activated calcium currents in Drosophila motoneurons. J Physiol 590(4):809–825

    Article  CAS  PubMed  Google Scholar 

  27. Gordon S, Dickinson MH (2006) Role of calcium in the regulation of mechanical power in insect flight. Proc Natl Acad Sci 103(11):4311–4315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ewing AW (1977) The neuromuscular basis of courtship song in Drosophila: the role of the direct and axillary wing muscles. J Comp Physiol 130:87–93

    Article  Google Scholar 

  29. Ryglewski S, Kadas D, Hutchinson K, Schuetzler N, Vonhoff F, Duch C (2014) Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior. Proc Natl Acad Sci 111(50):18049–18054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berger S (2014) Analysis of Signal Propagation and Excitability in Computational Models of an Identified Drosophila Motoneuron. Dissertation, Arizona State University, 2014

  31. Hutchinson KM, Vonhoff F, Duch C (2014) Dscam1 is required for normal dendrite growth and branching but not for dendritic spacing in Drosophila motoneurons. J Neurosci 34(5):1924–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gabbiani F, Krapp HG, Koch C, Laurent G (2002) Multiplicative computation in a visual neuron sensitive to looming. Nature 420(6913):320–324

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carsten Duch or Stefanie Ryglewski.

Ethics declarations

Conflict of interest

C. Duch and S. Ryglewski declare that they have no competing interests.

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duch, C., Ryglewski, S. Structure and function of neuronal dendrites. e-Neuroforum 7, 71–81 (2016). https://doi.org/10.1007/s13295-016-0032-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-016-0032-4

Keywords

Navigation