Skip to main content
Log in

New insights into the role of GABAergic inhibition during functional reorganization of the visual cortex post-lesion

  • Review article
  • Published:
e-Neuroforum

Abstract

Cortical injuries are a leading cause of death and disability worldwide. The first weeks post-lesion are usually crucial to predict the final outcome of patients. While most of them experience a spontaneous, at least partial, restoration of function, in some the clinical picture is complicated due to the development of epileptic seizures. A substantial number of studies suggest that these phenomena may be triggered by complex functional alterations in intracortical inhibition, often observed in perilesional cortical areas. Pathophysiological changes in GABAergic transmission are indeed likely to alter plasticity, excitability, and function of cortical circuits. The development of more efficient therapeutic strategies may, therefore, require a deep understanding into lesion-induced changes in inhibition at both the cellular and neuronal network levels. In this review, we gather together information from recent studies which have focused on dissecting alterations at inhibitory synapses as well as in the function of different subclasses of interneurons following cortical lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. EGABA is the neuronal membrane potential at which the net flow of GABAARs permeable ions (Cl and to a minor extent HCO3 ions), across a neuronal membrane, following receptor activation, is zero. At this specific potential the concentration gradient force to drive Cl ions (and HCO3 ) into a neuron, is equal and, therefore, neutralized by the electrical force that drives negatively charged ions out of a negatively polarized neuron.

References

  1. Artola A, Singer W (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330:649–652

    Article  CAS  PubMed  Google Scholar 

  2. Brown CE, Li P, Boyd JD et al (2007) Extensive turnover of sendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci 27:4101–4109

    Article  CAS  PubMed  Google Scholar 

  3. Cernak I (2005) Animal models of head trauma. NeuroRx 2:410–422

    Article  PubMed Central  PubMed  Google Scholar 

  4. Clarkson AN, Huang BS, MacIsaac SE et al (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468:305–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Di Cristo G, Wu C, Chattopadhyaya B et al (2004) Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs. Nat Neurosci 7:1184–1186

    Article  Google Scholar 

  6. Eysel UT, Schmidt-Kastner R (1991) Neuronal dysfunction at the border of focal lesions in cat visual cortex. Neurosci Lett 131:45–48

    Article  CAS  PubMed  Google Scholar 

  7. Eysel UT, Schweigart G (1999) Increased receptive field size in the surround of chronic lesions in the adult cat visual cortex. Cereb Cortex 9:101–109

    Article  CAS  PubMed  Google Scholar 

  8. Eysel UT, Schweigart G, Mittmann T et al (1999) Reorganization in the visual cortex after retinal and cortical damage. Restor Neurol Neurosci 15:153–164

    CAS  PubMed  Google Scholar 

  9. Fagiolini M, Hensch TK (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404:183–186

    Article  CAS  PubMed  Google Scholar 

  10. Fisher M, Albers GW (2013) Advanced imaging to extend the therapeutic time window of acute ischemic stroke. Ann Neurol 73:4–9

    Article  PubMed  Google Scholar 

  11. Garber K (2007) Stroke treatment—light at the end of the tunnel? Nat biotechnol 25:838–840

    Article  CAS  PubMed  Google Scholar 

  12. Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hagemann G, Redecker C, Neumann-Haefelin T et al (1998) Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Ann Neurol 44:255–258

    Article  CAS  PubMed  Google Scholar 

  14. Imbrosci B, Eysel UT, Mittmann T (2010) Metaplasticity of horizontal connections in the vicinity of focal laser lesions in rat visual cortex. J Physiol 588:4695–4703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Imbrosci B, Mittmann T (2011) Functional consequences of the disturbances in the GABA-mediated inhibition induced by injuries in the cerebral cortex. Neural Plast 2011:614329

    Article  PubMed Central  PubMed  Google Scholar 

  16. Imbrosci B, Neubacher U, White R et al (2013) Shift from phasic to tonic GABAergic transmission following laser-lesions in the rat visual cortex. Pflugers Arch 465:879–893

    Article  CAS  PubMed  Google Scholar 

  17. Imbrosci B, Mittmann T (2013) Alterations in membrane and firing properties of layer 2/3 pyramidal neurons following focal laser lesions in rat visual cortex. Neuroscience 250:208–221

    Article  CAS  PubMed  Google Scholar 

  18. Jenkins WM, Merzenich MM (1987) Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog Brain Res 71:249–266

    Article  CAS  PubMed  Google Scholar 

  19. Jin X, Huguenard JR, Prince DA (2005) Impaired Cl extrusion in layer V pyramidal neurons of chronically injured epileptogenic neocortex. J Neurophysiol 93:2117–2126

    Article  CAS  PubMed  Google Scholar 

  20. Kirkwood A, Bear MF (1994) Hebbian synapses in visual cortex. J Neurosci 14:1634–1645

    CAS  PubMed  Google Scholar 

  21. Li H, Prince DA (2002) Synaptic activity in chronically injured, epileptogenic sensory-motor neocortex. J Neurophysiol 88:2–12

    PubMed  Google Scholar 

  22. Li H, Bandrowski AE, Prince DA (2005) Cortical injury affects short-term plasticity of evoked excitatory synaptic currents. J Neurophysiol 93:146–156

    Article  PubMed  Google Scholar 

  23. Ma Y, Prince DA (2012) Functional alterations in GABAergic fast-spiking interneurons in chronically injured epileptogenic neocortex. Neurobiol Dis 47:102–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Misgeld U, Bijak M, Jarolimek W (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46:423–462

    Article  CAS  PubMed  Google Scholar 

  25. Mittmann T, Eysel UT (2001) Increased synaptic plasticity in the surround of visual cortex lesions in rats. Neuroreport 12:3341–3347

    Article  CAS  PubMed  Google Scholar 

  26. Mittmann T, Luhmann HJ, Schmidt-Kastner R et al (1994) Lesion-induced transient suppression of inhibitory function in rat neocortex in vitro. Neuroscience 60:891–906

    Article  CAS  PubMed  Google Scholar 

  27. Mittmann T, Que M, Zilles K, Luhmann HJ (1998) Long-term cellular dysfunction after focal cerebral ischemia: in vitro analyses. Neuroscience 85:15–27

    Article  CAS  PubMed  Google Scholar 

  28. Nabekura J, Ueno T, Okabe A et al (2002) Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury. J Neurosci 22:4412–4417

    CAS  PubMed  Google Scholar 

  29. Naeser MA, Palumbo CL, Prete MN et al (1998) Visible changes in lesion borders on CT scan after five years poststroke, and long-term recovery in aphasia. Brain Lang 62:1–28

    Article  CAS  PubMed  Google Scholar 

  30. Neumann-Haefelin T, Hagemann G, Witte OW (1995) Cellular correlates of neuronal hyperexcitability in the vicinity of photochemically induced cortical infarcts in rats in vitro. Neurosci Lett 193:101–104

    Article  CAS  PubMed  Google Scholar 

  31. Nita DA, Cisse Y, Timofeev I, Steriade M (2006) Increased propensity to seizures after chronic cortical deafferentation in vivo. J Neurophysiol 95:902–913

    Article  PubMed  Google Scholar 

  32. Oliva AA Jr, Jiang M, Lam T et al (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368

    CAS  PubMed  Google Scholar 

  33. Pettigrew JD, Daniels JD (1973) Gamma-aminobutyric acid antagonism in visual cortex: different effects on simple, complex and hypercomplex neurons. Science 182:81–83

    Article  CAS  PubMed  Google Scholar 

  34. Prince DA, Tseng GF (1993) Epileptogenesis in chronically injured cortex: in vitro studies. J Neurophysiol 69:1276–1291

    CAS  PubMed  Google Scholar 

  35. Que M, Mittmann T, Luhmann HJ et al (1998) Long-term changes of ionotropic glutamate and GABA receptors after unilateral permanent focal cerebral ischemia in the mouse brain. Neuroscience 85:29–43

    Article  Google Scholar 

  36. Sale A, Berardi N, Spolidoro M et al (2010) GABAergic inhibition in visual cortical plasticity. Front Cell Neurosci 4:10

    PubMed Central  PubMed  Google Scholar 

  37. Sbordone RJ, Liter JC, Pettler-Jennings P (1995) Recovery of function following severe traumatic brain injury: a retrospective 10-year follow-up. Brain Inj 9:285–299

    Article  CAS  PubMed  Google Scholar 

  38. Schiene K, Bruehl C, Zilles K et al (1996) Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J Cereb Blood Flow Metab 16:906–914

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt S, Bruehl C, Frahm C et al (2012) Age dependence of excitatory-inhibitory balance following stroke. Neurobiol Aging 33:1356–1363

    Article  CAS  PubMed  Google Scholar 

  40. Shulga A, Thomas-Crusells J, Sigl T et al (2008) Posttraumatic GABAA-mediated [Ca2+]i increase is essential for the induction of brain-derived neurotrophic factor-dependent survival of mature central neurons. J Neurosci 28:6996–7005

    Article  CAS  PubMed  Google Scholar 

  41. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  CAS  PubMed  Google Scholar 

  42. Stein SC, Georgoff P, Meghan S et al (2010) 150 years of treating severe traumatic brain injury: a systematic review of progress in mortality. J Neurotrauma 27:1343–1353

    Article  PubMed  Google Scholar 

  43. Topolnik L, Steriade M, Timofeev I (2003) Partial cortical deafferentation promotes development of paroxysmal activity. Cereb Cortex 13:883–893

    Article  PubMed  Google Scholar 

  44. Wang J, Caspary D, Salvi RJ (2000) GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. Neuroreport 11:1137–1140

    Article  CAS  PubMed  Google Scholar 

  45. Yan L, Imbrosci B, Zhang W et al (2012) Changes in NMDA-receptor function in the first week following laser-induced lesions in rat visual cortex. Cereb Cortex 22:2392–2403

    Article  PubMed  Google Scholar 

  46. Zihl J, Cramon D von (1985) Visual field recovery from scotoma in patients with postgeniculate damage. A review of 55 cases. Brain 108:335–365

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. B. Imbrosci and T. Mittmann have made no statement.

The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mittmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittmann, T., Imbrosci, B. New insights into the role of GABAergic inhibition during functional reorganization of the visual cortex post-lesion. e-Neuroforum 5, 12–19 (2014). https://doi.org/10.1007/s13295-014-0052-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-014-0052-x

Keywords

Navigation