Skip to main content

Advertisement

Log in

Reversion-inducing cysteine-rich protein with Kazal motifs and its regulation by glycogen synthase kinase 3 signaling in oral cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and glycogen synthase kinase (GSK3) are novel tumor suppressors, and emerging evidence has suggested their active role in oral cancer pathogenesis. In the present study, 112 human samples, including 55 fresh samples of 14 adjacent normal tissues, 25 noninvasive oral tumors, and 18 invasive tumors, were included. The messenger RNA (mRNA) expression, protein expression, and promoter methylation of the RECK gene, as well as the expression of GSK3β, phospho/total β-catenin, and c-myc, were measured by RT-PCR, bisulphate modification-PCR, immunohistochemistry, and Western blot analysis. Additionally, ectopic expression of in/active GSK3β was performed in cell culture experiments. This study provided information on the progressive silencing of RECK gene expression at the protein and mRNA levels paralleled with promoter hypermethylation at various stages of oral tumor invasion. RECK expression and the hypermethylation of the RECK gene promoter were negatively and positively correlated with pS9GSK3β/c-myc expression, respectively. Further, a negative trend of RECK protein expression with nuclear β-catenin expression was observed. Induced expression of active GSK3β reversed the RECK silencing in SCC9 cells. Collectively, our results demonstrated that the silencing of the RECK gene, possibly regulated by the GSK3β pathway, is an important event in oral cancer invasion and this pathway could be exploited for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Simard EP, Torre LA, Jemal A. International trends in head and neck cancer incidence rates: differences by country, sex and anatomic site. Oral Oncol. 2014;50:387–403.

    Article  PubMed  Google Scholar 

  3. Warnakulasuriya S, Sutherland G, Scully C. Tobacco, oral cancer, and treatment of dependence. Oral Oncol. 2005;41:244–60.

    Article  PubMed  Google Scholar 

  4. Mahapatra S, Kamath R, Shetty BK, Binu VS. Risk of oral cancer associated with gutka and other tobacco products: a hospital-based case-control study. J Cancer Res Ther. 2015;11:199–203.

    Article  CAS  PubMed  Google Scholar 

  5. Vidya Priyadarsini R, Senthil Murugan R, Nagini S. Aberrant activation of Wnt/beta-catenin signaling pathway contributes to the sequential progression of DMBA-induced HBP carcinomas. Oral Oncol. 2012;48:33–9.

    Article  PubMed  Google Scholar 

  6. Prgomet Z, Axelsson L, Lindberg P, Andersson T. Migration and invasion of oral squamous carcinoma cells is promoted by WNT5A, a regulator of cancer progression. J Oral Pathol Med. 2015;44:776–84.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K, et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci U S A. 1998;95:13221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alexius-Lindgren M, Andersson E, Lindstedt I, Engstrom W. The RECK gene and biological malignancy—its significance in angiogenesis and inhibition of matrix metalloproteinases. Anticancer Res. 2014;34:3867–73.

    CAS  PubMed  Google Scholar 

  9. Yu Y, Hu Y, Li K, Chen Z, Zhang H, Zhang L. RECK gene polymorphism is associated with susceptibility and prognosis of Wilms’ tumor in Chinese children. Med Sci Monit. 2015;21:1928–33.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Span PN, Sweep CG, Manders P, Beex LV, Leppert D, Lindberg RL. Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs: a prognostic marker for good clinical outcome in human breast carcinoma. Cancer. 2003;97:2710–5.

    Article  CAS  PubMed  Google Scholar 

  11. Namwat N, Puetkasichonpasutha J, Loilome W, Yongvanit P, Techasen A, Puapairoj A, et al. Downregulation of reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is associated with enhanced expression of matrix metalloproteinases and cholangiocarcinoma metastases. J Gastroenterol. 2011;46:664–75.

    Article  CAS  PubMed  Google Scholar 

  12. Du YY, Dai DQ, Yang Z. Role of RECK methylation in gastric cancer and its clinical significance. World J Gastroenterol. 2010;16:904–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Long NK, Kato K, Yamashita T, Makita H, Toida M, Hatakeyama D, et al. Hypermethylation of the RECK gene predicts poor prognosis in oral squamous cell carcinomas. Oral Oncol. 2008;44:1052–8.

    Article  CAS  PubMed  Google Scholar 

  14. Nagini S, Letchoumy PV. A T, Cr R. Of humans and hamsters: a comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas. Oral Oncol. 2009;45:e31–7.

    Article  CAS  PubMed  Google Scholar 

  15. Han L, Yue X, Zhou X, Lan FM, You G, Zhang W, et al. MicroRNA-21 expression is regulated by beta-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK. CNS Neurosci Ther. 2012;18:573–83.

    Article  CAS  PubMed  Google Scholar 

  16. Lan F, Yue X, Han L, Shi Z, Yang Y, Pu P, et al. Genome-wide identification of TCF7L2/TCF4 target miRNAs reveals a role for miR-21 in Wnt-driven epithelial cancer. Int J Oncol. 2012;40:519–26.

    CAS  PubMed  Google Scholar 

  17. Brenner C, Deplus R, Didelot C, Loriot A, Vire E, De Smet C, et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 2005;24:336–46.

    Article  CAS  PubMed  Google Scholar 

  18. Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001;2:769–76.

    Article  CAS  PubMed  Google Scholar 

  19. Doble BW, Woodgett JR. Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs. 2007;185:73–84.

    Article  CAS  PubMed  Google Scholar 

  20. Mishra R, Nagini S, Rana A. Expression and inactivation of glycogen synthase kinase 3 alpha/beta and their association with the expression of cyclin D1 and p53 in oral squamous cell carcinoma progression. Mol Cancer. 2015;14:20.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mishra R. Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer. 2010;9:144.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang C, Ling Y, Zhang C, Xu Y, Gao L, Li R, et al. The silencing of RECK gene is associated with promoter hypermethylation and poor survival in hepatocellular carcinoma. Int J Biol Sci. 2012;8:451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clark JC, Thomas DM, Choong PF, Dass CR. RECK—a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev. 2007;26:675–83.

    Article  CAS  PubMed  Google Scholar 

  24. Jung HM, Phillips BL, Patel RS, Cohen DM, Jakymiw A, Kong WW, et al. Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer. J Biol Chem. 2012;287:29261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong KJ, Hsu MC, Hou MF, Hung WC. The tumor suppressor RECK interferes with HER-2/neu dimerization and attenuates its oncogenic signaling. FEBS Lett. 2011;585:591–5.

    Article  CAS  PubMed  Google Scholar 

  26. Kitajima S, Miki T, Takegami Y, Kido Y, Noda M, Hara E, et al. Reversion-inducing cysteine-rich protein with Kazal motifs interferes with epidermal growth factor receptor signaling. Oncogene. 2011;30:737–50.

    Article  CAS  PubMed  Google Scholar 

  27. Sasahara RM, Takahashi C, Noda M. Involvement of the Sp1 site in ras-mediated downregulation of the RECK metastasis suppressor gene. Biochem Biophys Res Commun. 1999;264:668–75.

    Article  CAS  PubMed  Google Scholar 

  28. Hsu MC, Chang HC, Hung WC. HER-2/neu represses the metastasis suppressor RECK via ERK and Sp transcription factors to promote cell invasion. J Biol Chem. 2006;281:4718–25.

    Article  CAS  PubMed  Google Scholar 

  29. Liu LT, Peng JP, Chang HC, Hung WC. RECK is a target of Epstein-Barr virus latent membrane protein 1. Oncogene. 2003;22:8263–70.

    Article  CAS  PubMed  Google Scholar 

  30. Mishra R, Das BR. Early overexpression of Cdk4 and possible role of KRF and c-myc in chewing tobacco mediated oral cancer development. Mol Biol Rep. 2003;30:207–13.

    Article  CAS  PubMed  Google Scholar 

  31. Chung TT, Pan MS, Kuo CL, Wong RH, Lin CW, Chen MK, et al. Impact of RECK gene polymorphisms and environmental factors on oral cancer susceptibility and clinicopathologic characteristics in Taiwan. Carcinogenesis. 2011;32:1063–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lin HY, Chiang CH, Hung WC. STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells. Br J Cancer. 2013;109:731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17:330–9.

    Article  CAS  PubMed  Google Scholar 

  34. Chang HC, Cho CY, Hung WC. Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Res. 2006;66:8413–20.

    Article  CAS  PubMed  Google Scholar 

  35. Kanai Y, Hirohashi S. Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis. 2007;28:2434–42.

    Article  CAS  PubMed  Google Scholar 

  36. Cardeal LB, Boccardo E, Termini L, Rabachini T, Andreoli MA, di Loreto C, et al. HPV16 oncoproteins induce MMPs/RECK-TIMP-2 imbalance in primary keratinocytes: possible implications in cervical carcinogenesis. PLoS One. 2012;7:e33585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mishra R. Biomarkers of oral premalignant epithelial lesions for clinical application. Oral Oncol. 2012;48:578–84.

    Article  CAS  PubMed  Google Scholar 

  38. Steiner P, Philipp A, Lukas J, Godden-Kent D, Pagano M, Mittnacht S, et al. Identification of a Myc-dependent step during the formation of active G1 cyclin-cdk complexes. EMBO J. 1995;14:4814–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Packham G, Cleveland JL. c-Myc and apoptosis. Biochim Biophys Acta. 1995;1242:11–28.

    PubMed  Google Scholar 

  40. Askew DS, Ashmun RA, Simmons BC, Cleveland JL. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene. 1991;6:1915–22.

    CAS  PubMed  Google Scholar 

  41. Gregory MA, Qi Y, Hann SR. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem. 2003;278:51606–12.

    Article  CAS  PubMed  Google Scholar 

  42. Chang HC, Liu LT, Hung WC. Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cell Signal. 2004;16:675–9.

    Article  CAS  PubMed  Google Scholar 

  43. Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, et al. Expression of DNA methyltransferases DNMT1, 3 A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001;97:1172–9.

    Article  CAS  PubMed  Google Scholar 

  44. Gomes LR, Terra LF, Wailemann RA, Labriola L, Sogayar MC. TGF-beta1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer. 2012;12:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pezeron G, Millen K, Boukhatmi H, Bray S. Notch directly regulates the cell morphogenesis genes Reck, talin and trio in adult muscle progenitors. J Cell Sci. 2014;127:4634–44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Prof. M.K. Rai (Pathologist), Director, RIMS, Ranchi, and Prof. NK Jha, Head Dept. of Surgery (and his colleagues) RIMS, Ranchi; and the Director of CARA, Cancer Hospital, Ranchi, and his colleagues Dr. M. Akhouri, Dr.(Md) Aftab A. Ansari, Dr. K. Saurav, and Dr. Raghav Sharan (Clinic), Ranchi, for their cooperation. RM thanks the M.Sc. students (Sunita, Pooja and Meher) and is thankful to Dr. Rupesh Dash, ILS, Bhubaneswar, for his kind support. The fellowship of KKP (JRF-CSIR), AKS (DBT-Research Associate), MA (Project JRF), MA, TK, and PM (CUJ Fellowship) and the financial support from the DBT, New Delhi (Project No. BT/PR4624/MED/30/701/2012; Departmental DBT Builder Programme No. BT/PR9028/INF/22/193/2013), are acknowledged.

Authors’ contributions

KKP, MA, SN, AR, and RM contributed to the IHC, WB, and RT-PCR experiments. KKP, AKS, TK, PM, and RKD contributed to the DNA methylation experiments. KKP, RM, and AR contributed to the cell culture experiments and AKP for statistics. RM has written the MS, and the final version of the MS has been approved by all the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajakishore Mishra.

Ethics declarations

The samples were collected after obtaining informed consent from the patients, and the use of human samples was approved by the Institutional Human Ethical Committee of CUJ. The work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki).

Conflicts of interest

None

Role of the funding source

No role except financial assistance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, K.K., Singh, A.K., Alam, M. et al. Reversion-inducing cysteine-rich protein with Kazal motifs and its regulation by glycogen synthase kinase 3 signaling in oral cancer. Tumor Biol. 37, 15253–15264 (2016). https://doi.org/10.1007/s13277-016-5362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5362-x

Keywords

Navigation