Skip to main content

Advertisement

Log in

Reprogramming bladder cancer cells for studying cancer initiation and progression

  • Original Article
  • Published:
Tumor Biology

Abstract

The induced pluripotent stem cell (iPSC) technology is the forced expression of specific transcription factors in somatic cells resulting in transformation into self-renewing, pluripotent cells which possess the ability to differentiate into any type of cells in the human body. While malignant cells could also be reprogrammed into iPSC-like cells with lower efficiency due to the genetic and epigenetic barriers in cancer cells, only a limited number of cancer cell types could be successfully reprogrammed until today. In the present study, we aimed at reprogramming two bladder cancer cell lines HTB-9 and T24 using a non-integrating Sendai virus (SeV) system. We have generated six sub-clones using distinct combinations of four factors—OCT4, SOX2, KLF4 and c-MYC—in two bladder cancer cell lines. Only a single sub-clone, T24 transduced with 4Fs, gave rise to iPSC-like cells. Bladder cancer cell-derived T24 4F cells represent unique features of pluripotent cells such as epithelial-like morphology, colony-forming ability, expression of pluripotency-associated markers and bearing the ability to differentiate in vitro. This is the first study focusing on the reprogramming susceptibility of two different bladder cancer cell lines to nuclear reprogramming. Further molecular characterisation of T24 4F cells could provide a better insight for biomarker research in bladder carcinogenesis and could offer a valuable tool for the development of novel therapeutic approaches in bladder carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366(1575):2198–207. doi:10.1098/rstb.2011.0016.

    Article  CAS  Google Scholar 

  2. Zeltner N, Studer L. Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr Opin Cell Biol. 2015;37:102–10. doi:10.1016/j.ceb.2015.10.008.

    Article  CAS  PubMed  Google Scholar 

  3. Semi K, Matsuda Y, Ohnishi K, Yamada Y. Cellular reprogramming and cancer development. Int J Cancer J Int Cancer. 2013;132(6):1240–8. doi:10.1002/ijc.27963.

    Article  CAS  Google Scholar 

  4. Kim J, Zaret KS. Reprogramming of human cancer cells to pluripotency for models of cancer progression. EMBO J. 2015;34(6):739–47. doi:10.15252/embj.201490736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Noguchi K, Eguchi H, Konno M, Kawamoto K, Nishida N, Koseki J, et al. Susceptibility of pancreatic cancer stem cells to reprogramming. Cancer Sci. 2015;106(9):1182–7. doi:10.1111/cas.12734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miyoshi N, Ishii H, Nagai K, Hoshino H, Mimori K, Tanaka F, et al. Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A. 2010;107(1):40–5. doi:10.1073/pnas.0912407107.

    Article  CAS  PubMed  Google Scholar 

  7. Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011;71(13):4640–52. doi:10.1158/0008-5472.CAN-10-3320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nishi M, Sakai Y, Akutsu H, Nagashima Y, Quinn G, Masui S, et al. Induction of cells with cancer stem cell properties from nontumourigenic human mammary epithelial cells by defined reprogramming factors. Oncogene. 2014;33(5):643–52. doi:10.1038/onc.2012.614.

    Article  CAS  PubMed  Google Scholar 

  9. Borges GT, Vencio EF, Quek SI, Chen A, Salvanha DM, Vencio RZ, et al. Conversion of prostate adenocarcinoma to small cell carcinoma-like by reprogramming. J Cell Physiol. 2016. doi:10.1002/jcp.25313.

    PubMed  Google Scholar 

  10. Koga C, Kobayashi S, Nagano H, Tomimaru Y, Hama N, Wada H, et al. Reprogramming using microRNA-302 improves drug sensitivity in hepatocellular carcinoma cells. Ann Surg Oncol. 2014;21(Suppl 4):S591–600. doi:10.1245/s10434-014-3705-7.

    Article  PubMed  Google Scholar 

  11. Stricker SH, Feber A, Engstrom PG, Caren H, Kurian KM, Takashima Y, et al. Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes Dev. 2013;27(6):654–69. doi:10.1101/gad.212662.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Islam SM, Suenaga Y, Takatori A, Ueda Y, Kaneko Y, Kawana H, et al. Sendai virus-mediated expression of reprogramming factors promotes plasticity of human neuroblastoma cells. Cancer Sci. 2015;106(10):1351–61. doi:10.1111/cas.12746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Cruz FD, Terry M, Remotti F, Matushansky I. Terminal differentiation and loss of tumourigenicity of human cancers via pluripotency-based reprogramming. Oncogene. 2013;32(18):2249–60, 60 e1-21. doi:10.1038/onc.2012.237.

    Article  CAS  PubMed  Google Scholar 

  14. Moore JB, Loeb DM, Hong KU, Sorensen PH, Triche TJ, Lee DW, et al. Epigenetic reprogramming and re-differentiation of a Ewing sarcoma cell line. Front Cell Dev Biol. 2015;3:15. doi:10.3389/fcell.2015.00015.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kumano K, Arai S, Kurokawa M. Generation of iPS cells from normal and malignant hematopoietic cells. Int J Hematol. 2013;98(2):145–52. doi:10.1007/s12185-013-1385-x.

    Article  CAS  PubMed  Google Scholar 

  16. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 2008;454(7204):646–50. doi:10.1038/nature07061.

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez Tde S, de Souza Fernandez C, Mencalha AL. Human induced pluripotent stem cells from basic research to potential clinical applications in cancer. BioMed Res Int. 2013;2013:430290. doi:10.1155/2013/430290.

    PubMed  Google Scholar 

  18. Ron-Bigger S, Bar-Nur O, Isaac S, Bocker M, Lyko F, Eden A. Aberrant epigenetic silencing of tumour suppressor genes is reversed by direct reprogramming. Stem Cells. 2010;28(8):1349–54. doi:10.1002/stem.468.

    Article  CAS  PubMed  Google Scholar 

  19. Salci KR, Lee JH, Laronde S, Dingwall S, Kushwah R, Fiebig-Comyn A, et al. Cellular reprogramming allows generation of autologous hematopoietic progenitors from AML patients that are devoid of patient-specific genomic aberrations. Stem Cells. 2015;33(6):1839–49. doi:10.1002/stem.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin YC, Murayama Y, Hashimoto K, Nakamura Y, Lin CS, Yokoyama KK, et al. Role of tumour suppressor genes in the cancer-associated reprogramming of human induced pluripotent stem cells. Stem Cell Res Ther. 2014;5(2):58. doi:10.1186/scrt447.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giorgetti A, Montserrat N, Rodriguez-Piza I, Azqueta C, Veiga A, Izpisua Belmonte JC. Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nat Protoc. 2010;5(4):811–20. doi:10.1038/nprot.2010.16.

    Article  CAS  PubMed  Google Scholar 

  22. Baxter MA, Camarasa MV, Bates N, Small F, Murray P, Edgar D, et al. Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res. 2009;3(1):28–38. doi:10.1016/j.scr.2009.03.002.

    Article  CAS  PubMed  Google Scholar 

  23. Soteriou D, Iskender B, Byron A, Humphries JD, Borg-Bartolo S, Haddock MC, et al. Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. J Biol Chem. 2013;288(26):18716–31. doi:10.1074/jbc.M113.463372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K, Fujii S, et al. Regeneration of human tumour antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell. 2013;12(1):31–6. doi:10.1016/j.stem.2012.12.006.

    Article  CAS  PubMed  Google Scholar 

  25. Iskender B, Izgi K, Sakalar C, Canatan H. Priming hMSCs with a putative anti-cancer compound, myrtucommulone-a: a way to harness hMSC cytokine expression via modulating PI3K/Akt pathway? Tumour Biol. 2015;37(2):1967–81.

    Article  PubMed  Google Scholar 

  26. Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells. 2008;26(10):2467–74. doi:10.1634/stemcells.2008-0317.

    Article  CAS  PubMed  Google Scholar 

  27. Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G, et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet. 2009;41(9):968–76. doi:10.1038/ng.428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Papp B, Plath K. Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res. 2011;21(3):486–501. doi:10.1038/cr.2011.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iskender B, Izgi K, Karaca H, Canatan H. Myrtucommulone-A treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9. J Nat Med. 2015;69(4):543–54. doi:10.1007/s11418-015-0923-7.

    Article  CAS  PubMed  Google Scholar 

  30. Utikal J, Maherali N, Kulalert W, Hochedlinger K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci. 2009;122(Pt 19):3502–10. doi:10.1242/jcs.054783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oshima N, Yamada Y, Nagayama S, Kawada K, Hasegawa S, Okabe H, et al. Induction of cancer stem cell properties in colon cancer cells by defined factors. PLoS One. 2014;9(7):e101735. doi:10.1371/journal.pone.0101735.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Buganim Y, Faddah DA, Jaenisch R. Mechanisms and models of somatic cell reprogramming. Nat Rev Genet. 2013;14(6):427–39. doi:10.1038/nrg3473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer. 2013;13(7):497–510. doi:10.1038/nrc3486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ. Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol. 2009;220(3):538–47. doi:10.1002/jcp.21799.

    Article  CAS  PubMed  Google Scholar 

  35. Lin SL, Chang DC, Chang-Lin S, Lin CH, DT W, Chen DT, et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA. 2008;14(10):2115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011;8(5):424–9. doi:10.1038/nmeth.1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell. 2014;156(4):663–77. doi:10.1016/j.cell.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  38. Hayashi Y, Chan T, Warashina M, Fukuda M, Ariizumi T, Okabayashi K, et al. Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions. PLoS One. 2010;5(11):e14099. doi:10.1371/journal.pone.0014099.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim HT, Lee KI, Kim DW, Hwang DY. An ECM-based culture system for the generation and maintenance of xeno-free human iPS cells. Biomaterials. 2013;34(4):1041–50. doi:10.1016/j.biomaterials.2012.10.064.

    Article  CAS  PubMed  Google Scholar 

  40. Hoshino H, Nagano H, Haraguchi N, Nishikawa S, Tomokuni A, Kano Y, et al. Hypoxia and TP53 deficiency for induced pluripotent stem cell-like properties in gastrointestinal cancer. Int J Oncol. 2012;40(5):1423–30. doi:10.3892/ijo.2012.1346.

    CAS  PubMed  Google Scholar 

  41. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumours. Nat Genet. 2008;40(5):499–507. doi:10.1038/ng.127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ratajczak MZ, Shin DM, Liu R, Marlicz W, Tarnowski M, Ratajczak J, et al. Epiblast/germ line hypothesis of cancer development revisited: lesson from the presence of Oct-4+ cells in adult tissues. Stem Cell Rev. 2010;6(2):307–16. doi:10.1007/s12015-010-9143-4.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaneko Y, Suenaga Y, Islam SM, Matsumoto D, Nakamura Y, Ohira M, et al. Functional interplay between MYCN, NCYM, and OCT4 promotes aggressiveness of human neuroblastomas. Cancer Sci. 2015;106(7):840–7. doi:10.1111/cas.12677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banu Iskender.

Ethics declarations

Conflict of interest

None

Grant support

This study was supported by the grants from The Scientific and Technological Research Council of Turkey (No: 114S542 and 113S927).

Electronic supplementary material

Supplementary Figure 1

Immunofluorescent analysis of pluripotency-associated markers NANOG, OCT4, SOX2, TRA-1-60 and SSEA-4 in untransduced parental T24 and T24 cells transduced with 4Fs. Transduced T24 4F cells organised as colonies which were positively stained for pluripotency-associated markers while parental T24 cells exhibited a restricted expression in monolayer cultures. Nuclei were stained with DAPI. Scale bar represents 100 μm. (PDF 18941 kb) (PDF 18941 kb)

Supplementary Figure 2

Immunofluorescent analysis of pluripotency-associated markers NANOG, OCT4, SOX2, SSEA-4 and TRA-1-60 in untransduced parental HTB-9 cells and HTB-9 cells transduced with 4Fs. Untransduced parental T24 cells were compared to transduced HTB-9 4F cells at passage 10. Although transduction of HTB-9 cells resulted in an increase in expressions of pluripotency-associated markers SOX2, TRA-1-60 and SSEA-4, cells did not form colonies or represent typical colony formation of pluripotent cells. Nuclei were stained with DAPI. Scale bar represents 100 μm. (PDF 17820 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iskender, B., Izgi, K. & Canatan, H. Reprogramming bladder cancer cells for studying cancer initiation and progression. Tumor Biol. 37, 13237–13245 (2016). https://doi.org/10.1007/s13277-016-5226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5226-4

Keywords

Navigation