Skip to main content

Advertisement

Log in

The clinicopathological significance of miR-149 and PARP-2 in hepatocellular carcinoma and their roles in chemo/radiotherapy

  • Original Article
  • Published:
Tumor Biology

Abstract

Hepatocellular carcinomas (HCC) are commonly diagnosed at an advanced stage with unresectable tumors. Although numerous non-surgical approaches have been developed to treat HCC, the prognosis of patients with HCC is still poor. This study investigated the expression of miR-149 and PARP-2 in HCC tumor tissues and their roles in sensitizing chemo/radiotherapy. The expression of miR-149 was measured by real-time PCR, and PARP-2 protein was measured by immunohistochemistry and Western blot. The xenograft HCC mouse model was established by inoculating Hep G2 cells. Increased PARP-1 and decreased miR-149 expression was observed in HCC tissues compared to peritumoral tissues. Positive PARP-2 and low miR-149 expression correlated with larger tumor mass size (P < 0.001), capsular and vascular invasion (P < 0.001), lymph node metastasis (P = 0.02), high histological grade (P < 0.001), TNM (P < 0.001), and BCLC grade (P = 0.001). The Kaplan-Meier survival analysis showed a negative correlation between high PARP-2 expression or low miR-149 expression in HCC tissues with the survival of patients. High PARP-2 and low miR-149 correlated with a low 5-year survival rate and are poor prognosis factors. Overexpression of miR-149 or inhibition of PARP-2 expression could inhibit tumor growth but was more effective in sensitizing chemotherapy and radiotherapy in xenograft HCC animal models. Increased PARP-2 expression and loss of miR-149 expression are involved in the pathogenesis of HCC and are poor prognosis factors in patients with HCC. Although both miR-149 overexpression and PARP-2 inhibitor exert some antitumoral effect, PARP-2 inhibitor is a chemo/radio sensor and can be used to enhance chemotherapy and radiotherapy in patients with HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schlageter M, Terracciano LM, D'Angelo S, Sorrentino P. Histopathology of hepatocellular carcinoma. World J Gastroenterol. 2014;20:15955–64.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen WQ, Zheng RS, Zhang SW. Liver cancer incidence and mortality in China, 2009. Chin J Cancer. 2013;32:162–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen X, Liu HP, Li M, Qiao L. Advances in non-surgical management of primary liver cancer. World J Gastroenterol. 2014;20:16630–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  5. Yang N, Ekanem NR, Sakyi CA, Ray SD. Hepatocellular carcinoma and microRNA: New perspectives on therapeutics and diagnostics. Adv Drug Deliv Rev. 2014;81:62–74.

    Article  PubMed  Google Scholar 

  6. Guillot C, Favaudon V, Herceg Z, Sagne C, Sauvaigo S, Merle P, et al. PARP inhibition and the radiosensitizing effects of the PARP inhibitor ABT-888 in in vitro hepatocellular carcinoma models. BMC Cancer. 2014;14:603.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yelamos J, Schreiber V, Dantzer F. Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med. 2008;14:169–78.

    Article  CAS  PubMed  Google Scholar 

  8. Quiles-Perez R, Muñoz-Gámez JA, Ruiz-Extremera A, O'Valle F, Sanjuán-Nuñez L, Martín-Alvarez AB, et al. Inhibition of poly adenosine diphosphate-ribose polymerase decreases hepatocellular carcinoma growth by modulation of tumor-related gene expression. Hepatology. 2010;51:255–66.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.

    Article  CAS  PubMed  Google Scholar 

  10. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu Z, Zhang X, Wang G, Zheng H. Role of MicroRNAs in Hepatocellular Carcinoma. Hepat Mon. 2014;14:e18672.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Guo X, Xiong L, Yu L, Li Z, Guo Q, et al. Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway. Mol Cancer. 2014;13:253.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mohamed JS, Hajira A, Pardo PS, Boriek AM. MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1α network in skeletal muscle. Diabetes. 2014;63:1546–59.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Zhu X, Bai M, Zhang L, Xue L, Yi J. Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats. PLoS One. 2013;8:e69934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohausz O, Althaus FR. Role of PARP-1 and PARP-2 in the expression of apoptosis-regulating genes in HeLa cells. Cell Biol Toxicol. 2009;25:379–91.

    Article  CAS  PubMed  Google Scholar 

  16. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–3.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang G, Liu T, Chen YH, Chen Y, Xu M, Peng J, et al. Tissue Specific Cytotoxicity of Colon Cancer Cells Mediated by Nanoparticle-delivered Suicide Gene In vitro and In vivo. Clin Cancer Res. 2009;15:201–7.

    Article  PubMed  Google Scholar 

  18. Zhang X, Kon T, Wang H, Li F, Huang Q, Rabbani ZN, et al. Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1alpha. Cancer Res. 2004;64:8139–42.

    Article  CAS  PubMed  Google Scholar 

  19. Prasad SC, Thraves PJ, Bhatia KG, Smulson ME, Dritschilo A. Enhanced poly(adenosine diphosphate ribose) polymerase activity and gene expression in Ewing's sarcoma cells. Cancer Res. 1990;50:38–43.

    CAS  PubMed  Google Scholar 

  20. Tomoda T, Kurashige T, Moriki T, Yamamoto H, Fujimoto S, Taniguchi T. Enhanced expression of poly(ADP-ribose) synthetase gene in malignant lymphoma. Am J Hematol. 1991;37:223–7.

    Article  CAS  PubMed  Google Scholar 

  21. Nosho K, Yamamoto H, Mikami M, Taniguchi H, Takahashi T, Adachi Y, et al. Overexpression of poly(ADP-ribose) polymerase-1 (PARP-1) in the early stage of colorectal carcinogenesis. Eur J Cancer. 2006;42:2374–81.

    Article  CAS  PubMed  Google Scholar 

  22. Ossovskaya V, Koo IC, Kaldjian EP, Alvares C, Sherma BM. Upregulation of Poly(ADP-ribose) Polymerase-1 (PARP-1) in triple-Negative Breast Cancer and Other Primary human tumor types. Genes & Cancer. 2010;1:812–21.

    Article  CAS  Google Scholar 

  23. Yelamos J, Farres J, Llacuna L, Ampurdanes C, Martin-Caballero J. PARP-1 and PARP-2: New players in tumour development. Am J Cancer Res. 2011;1:328–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li D, Chen P, Li XY, Zhang LY, Xiong W, Zhou M, et al. Grade-specific expression profiles of miRNAs/mRNAs and docking study in human grade I-III astrocytomas. OMICS. 2011;15:673–82.

    Article  CAS  PubMed  Google Scholar 

  25. Luo Z, Zhang L, Li Z, Li X, Li G, Yu H, et al. An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma. BMC Med Genom. 2012;5:3.

    Article  CAS  Google Scholar 

  26. Wang Y, Zheng X, Zhang Z, Zhou J, Zhao G, Yang J, et al. MicroRNA-149 inhibits proliferation and cell cycle progression through the targeting of ZBTB2 in human gastric cancer. PLoS One. 2012;7:e41693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan SH, Huang WC, Chang JW, Chang KJ, Kuo WH, Wang MY, et al. MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene. 2014;33:4496–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China (81272972), National Basic Research Program of China (2010CB833605), Hunan Provincial Science and Technology Department (2014FJ4100, 3013FJ4010), Incubation Program for National Natural Science Funds for Distinguished Young Scholar of Central South University (2010QYZD006), Open-End Fund for the Valuable and Precision Instruments of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxiang Chen or Cai-ping Ren.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Zhang, Yd., Chen, Zy. et al. The clinicopathological significance of miR-149 and PARP-2 in hepatocellular carcinoma and their roles in chemo/radiotherapy. Tumor Biol. 37, 12339–12346 (2016). https://doi.org/10.1007/s13277-016-5106-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5106-y

Keywords

Navigation