Skip to main content

Advertisement

Log in

MicroRNA: a connecting road between apoptosis and cholesterol metabolism

  • Review
  • Published:
Tumor Biology

Abstract

Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Teicher BA, Linehan WM, Helman LJ. Targeting cancer metabolism. Clin Cancer Res. 2012;18(20):5537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Ho YK, Smith RG, Brown MS, Goldstein JL. Low-density lipoprotein (LDL) receptor activity in human acute myelogenous leukemia cells. Blood. 1978;52(6):1099–114.

    CAS  PubMed  Google Scholar 

  4. Vitols S, Gahrton G, Ost A, Peterson C. Elevated low density lipoprotein receptor activity in leukemic cells with monocytic differentiation. Blood. 1984;63(5):1186–93.

    CAS  PubMed  Google Scholar 

  5. Vitols S, Angelin B, Ericsson S, Gahrton G, Juliusson G, Masquelier M, et al. Uptake of low density lipoproteins by human leukemic cells in vivo: relation to plasma lipoprotein levels and possible relevance for selective chemotherapy. Proc Natl Acad Sci U S A. 1990;87(7):2598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elegbede JA, Elson CE, Qureshi A, Dennis WH, Yatvin MB. Increasing the thermosensitivity of a mammary tumor (CA755) through dietary modification. Eur J Cancer Clin Oncol. 1986;22(5):607–15.

    Article  CAS  PubMed  Google Scholar 

  7. Mondul AM, Weinstein SJ, Virtamo J, Albanes D. Serum total and HDL cholesterol and risk of prostate cancer. Cancer Causes Control. 2011;22(11):1545–52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wirehn AB, Tornberg S, Carstensen J. Serum cholesterol and testicular cancer incidence in 45,000 men followed for 25 years. Br J Cancer. 2005;92(9):1785–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rodrigues Dos Santos C, Fonseca I, Dias S, de Almeida JC M. Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression. BMC Cancer. 2014;14:132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hager MH, Solomon KR, Freeman MR. The role of cholesterol in prostate cancer. Curr Opin Clin Nutr Metab Care. 2006;9(4):379–85.

    Article  CAS  PubMed  Google Scholar 

  11. Clendening JW, Pandyra A, Boutros PC, El Ghamrasni S, Khosravi F, Trentin GA, et al. Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci U S A. 2010;107(34):15051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19(3):393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu JM, Skill NJ, Maluccio MA. Evidence of aberrant lipid metabolism in hepatitis C and hepatocellular carcinoma. HPB (Oxford). 2010;12(9):625–36.

    Article  Google Scholar 

  14. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279(15):2610–23.

    Article  CAS  PubMed  Google Scholar 

  15. Pettigrew CA, Cotter TG. Deregulation of cell death (apoptosis): implications for tumor development. Discov Med. 2009;8(41):61–3.

    PubMed  Google Scholar 

  16. Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev. 2009;9(7):501–7.

    Article  CAS  Google Scholar 

  17. Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature. 2005;438(7068):612–21.

    Article  CAS  PubMed  Google Scholar 

  18. Rotllan N, Fernandez-Hernando C. MicroRNA regulation of cholesterol metabolism. Cholesterol. 2012;2012:847849.

  19. Kim AJ, Shi Y, Austin RC, Werstuck GH. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci. 2005;118(Pt 1):89–99.

    Article  CAS  PubMed  Google Scholar 

  20. Quintero M, Cabanas ME, Arus C. 13C-labelling studies indicate compartmentalized synthesis of triacylglycerols in C6 rat glioma cells. Biochim Biophys Acta. 2010;1801(7):693–701.

    Article  CAS  PubMed  Google Scholar 

  21. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol. 2003;5(9):781–92.

    Article  CAS  PubMed  Google Scholar 

  22. Boren J, Brindle KM. Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ. 2012;19(9):1561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, et al. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ. 2005;12 Suppl 2:1463–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death. J Clin Invest. 2005;115(10):2665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15(6):725–31.

    Article  CAS  PubMed  Google Scholar 

  26. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147(4):742–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stoma S, Donze A, Bertaux F, Maler O, Batt G. STL-based analysis of TRAIL-induced apoptosis challenges the notion of type I/type II cell line classification. PLoS Comput Biol. 2013;9(5):e1003056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tawfik K, Kimler BF, Davis MK, Fan F, Tawfik O. Prognostic significance of Bcl-2 in invasive mammary carcinomas: a comparative clinicopathologic study between “triple-negative” and non-“triple-negative” tumors. Hum Pathol. 2012;43(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  31. Han H, Landreneau RJ, Santucci TS, Tung MY, Macherey RS, Shackney SE, et al. Prognostic value of immunohistochemical expressions of p53, HER-2/neu, and bcl-2 in stage I non-small-cell lung cancer. Hum Pathol. 2002;33(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  32. Placzek WJ, Wei J, Kitada S, Zhai D, Reed JC, Pellecchia M. A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis. 2010;1:e40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bullani RR, Wehrli P, Viard-Leveugle I, Rimoldi D, Cerottini JC, Saurat JH, et al. Frequent downregulation of Fas (CD95) expression and function in melanoma. Melanoma Res. 2002;12(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  34. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. BioMed Res Int. 2014;2014:150845.

  35. Green DR, Evan GI. A matter of life and death. Cancer Cell. 2002;1(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  36. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994;9(6):1799–805.

    CAS  PubMed  Google Scholar 

  37. Wallace-Brodeur RR, Lowe SW. Clinical implications of p53 mutations. Cell Mol Life Sci. 1999;55(1):64–75.

    Article  CAS  PubMed  Google Scholar 

  38. Tschopp J, Martinon F, Hofmann K. Apoptosis: silencing the death receptors. Curr Biol. 1999;9(10):R381–4.

    Article  CAS  PubMed  Google Scholar 

  39. Makin G, Hickman JA. Apoptosis and cancer chemotherapy. Cell Tissue Res. 2000;301(1):143–52.

    Article  CAS  PubMed  Google Scholar 

  40. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009;457(7232):981–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barcia C, Ros CM, Annese V, Gomez A, Ros-Bernal F, Aguado-Yera D, et al. IFN-gamma signaling, with the synergistic contribution of TNF-alpha, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis. 2011;2:e142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sassone J, Colciago C, Marchi P, Ascardi C, Alberti L, Di Pardo A, et al. Mutant Huntingtin induces activation of the Bcl-2/adenovirus E1B 19-kDa interacting protein (BNip3). Cell Death Dis. 2010;1:e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chauvier D, Renolleau S, Holifanjaniaina S, Ankri S, Bezault M, Schwendimann L, et al. Targeting neonatal ischemic brain injury with a pentapeptide-based irreversible caspase inhibitor. Cell Death Dis. 2011;2:e203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24–49.

    Article  CAS  PubMed  Google Scholar 

  45. Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A, et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell. 2002;13(3):978–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44.

    Article  CAS  PubMed  Google Scholar 

  47. Machado NG, Alves MG, Carvalho RA, Oliveira PJ. Mitochondrial involvement in cardiac apoptosis during ischemia and reperfusion: can we close the box? Cardiovasc Toxicol. 2009;9(4):211–27.

    Article  PubMed  Google Scholar 

  48. Nagata S. Apoptosis and autoimmune diseases. Ann N Y Acad Sci. 2010;1209:10–6.

    Article  CAS  PubMed  Google Scholar 

  49. Eguchi K. Apoptosis in autoimmune diseases. Intern Med (Tokyo, Japan). 2001;40(4):275–84.

    Article  CAS  Google Scholar 

  50. Vazquez CL, Colombo MI. Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection. Cell Death Differ. 2010;17(3):421–38.

    Article  CAS  PubMed  Google Scholar 

  51. Knoll S, Furst K, Thomas S, Villanueva Baselga S, Stoll A, Schaefer S, et al. Dissection of cell context-dependent interactions between HBx and p53 family members in regulation of apoptosis: a role for HBV-induced HCC. Cell Cycle (Georgetown Tex). 2011;10(20):3554–65.

    Article  CAS  Google Scholar 

  52. Podar K, Anderson KC. Caveolin-1 as a potential new therapeutic target in multiple myeloma. Cancer Lett. 2006;233(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  53. Fernandez C, Lobo MD Mdel V, Gomez-Coronado D, Lasuncion MA. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation. Exp Cell Res. 2004;300(1):109–20.

    Article  CAS  PubMed  Google Scholar 

  54. Fernandez C, Martin M, Gomez-Coronado D, Lasuncion MA. Effects of distal cholesterol biosynthesis inhibitors on cell proliferation and cell cycle progression. J Lipid Res. 2005;46(5):920–9.

    Article  CAS  PubMed  Google Scholar 

  55. Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001;104(4):503–16.

    Article  CAS  PubMed  Google Scholar 

  56. Weber LW, Boll M, Stampfl A. Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins. World J Gastroenterol. 2004;10(21):3081–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89(3):331–40.

    Article  CAS  PubMed  Google Scholar 

  58. Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest. 1997;99(5):838–45. doi:10.1172/JCI119247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shimano H. SREBPs: physiology and pathophysiology of the SREBP family. FEBS J. 2009;276(3):616–21. doi:10.1111/j.1742-4658.2008.06806.x.

    Article  CAS  PubMed  Google Scholar 

  60. Moore KJ, Rayner KJ, Suarez Y, Fernandez-Hernando C. microRNAs and cholesterol metabolism. Trends Endocrinol Metab TEM. 2010;21(12):699–706.

    Article  CAS  PubMed  Google Scholar 

  61. Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 2006;116(3):607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science (New York NY). 2009;325(5936):100–4.

    Article  CAS  Google Scholar 

  63. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 2008;7(5):365–75.

    Article  CAS  PubMed  Google Scholar 

  64. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 2000;14(22):2819–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Currie E, Schulze A, Zechner R, Walther TC, Farese Jr RV. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Trapani L, Segatto M, Pallottini V. Regulation and deregulation of cholesterol homeostasis: the liver as a metabolic “power station”. World J Hepatol. 2012;4(6):184–90.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Al-Allaf FA, Coutelle C, Waddington SN, David AL, Harbottle R, Themis M. LDLR-Gene therapy for familial hypercholesterolaemia: problems, progress, and perspectives. Int Arch Med. 2010;3:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grundy SM, Brewer Jr HB, Cleeman JI, Smith Jr SC, Lenfant C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433–8.

    Article  PubMed  Google Scholar 

  69. Simonen PP, Gylling HK, Miettinen TA. Diabetes contributes to cholesterol metabolism regardless of obesity. Diabetes Care. 2002;25(9):1511–5.

    Article  CAS  PubMed  Google Scholar 

  70. Liu JP, Tang Y, Zhou S, Toh BH, McLean C, Li H. Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol Cell Neurosci. 2010;43(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  71. Anchisi L, Dessi S, Pani A, Mandas A. Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Front Physiol. 2013;3:486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ifere GO, Desmond R, Demark-Wahnefried W, Nagy TR. Apolipoprotein E gene polymorphism influences aggressive behavior in prostate cancer cells by deregulating cholesterol homeostasis. Int J Oncol. 2013;43(4):1002–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoon S, Lee MY, Park SW, Moon JS, Koh YK, Ahn YH, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J Biol Chem. 2007;282(36):26122–31.

    Article  CAS  PubMed  Google Scholar 

  74. Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren I, Joniau S, et al. Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer. 2000;88(2):176–9.

    Article  CAS  PubMed  Google Scholar 

  75. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005;24(41):6314–22.

    Article  CAS  PubMed  Google Scholar 

  76. DuSell CD, Nelson ER, Wang X, Abdo J, Modder UI, Umetani M, et al. The endogenous selective estrogen receptor modulator 27-hydroxycholesterol is a negative regulator of bone homeostasis. Endocrinology. 2010;151(8):3675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Solomon DH, Finkelstein JS, Wang PS, Avorn J. Statin lipid-lowering drugs and bone mineral density. Pharmacoepidemiol Drug Saf. 2005;14(4):219–26.

    Article  CAS  PubMed  Google Scholar 

  78. Mandal CC. High cholesterol deteriorates bone health: new insights into molecular mechanisms. Front Endocrinol. 2015;6:165.

    Article  Google Scholar 

  79. Sutter I, Velagapudi S, Othman A, Riwanto M, Manz J, Rohrer L, et al. Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL. Atherosclerosis. 2015;241(2):539–46.

    Article  CAS  PubMed  Google Scholar 

  80. Nofer JR, Levkau B, Wolinska I, Junker R, Fobker M, von Eckardstein A, et al. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem. 2001;276(37):34480–5.

    Article  CAS  PubMed  Google Scholar 

  81. Lu X, Liu J, Hou F, Liu Z, Cao X, Seo H, et al. Cholesterol induces pancreatic beta cell apoptosis through oxidative stress pathway. Cell Stress Chaperones. 2011;16(5):539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. 2000;101(3):249–58.

    Article  CAS  PubMed  Google Scholar 

  83. Li F, Guo Y, Sun S, Jiang X, Tang B, Wang Q, et al. Free cholesterol-induced macrophage apoptosis is mediated by inositol-requiring enzyme 1 alpha-regulated activation of Jun N-terminal kinase. Acta Biochim Biophys Sin. 2008;40(3):226–34.

    Article  CAS  PubMed  Google Scholar 

  84. Dvorak AM, Weller PF, Harvey VS, Morgan ES, Dvorak HF. Ultrastructural localization of prostaglandin endoperoxide synthase (cyclooxygenase) to isolated, purified fractions of guinea pig peritoneal macrophage and line 10 hepatocarcinoma cell lipid bodies. Int Arch Allergy Immunol. 1993;101(2):136–42.

    Article  CAS  PubMed  Google Scholar 

  85. Than NG, Sumegi B, Bellyei S, Berki T, Szekeres G, Janaky T, et al. Lipid droplet and milk lipid globule membrane associated placental protein 17b (PP17b) is involved in apoptotic and differentiation processes of human epithelial cervical carcinoma cells. Eur J Biochem FEBS. 2003;270(6):1176–88.

    Article  CAS  Google Scholar 

  86. Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 2008;68(6):1732–40.

    Article  CAS  PubMed  Google Scholar 

  87. Opstad KS, Bell BA, Griffiths JR, Howe FA. An investigation of human brain tumour lipids by high-resolution magic angle spinning 1H MRS and histological analysis. NMR Biomed. 2008;21(7):677–85.

    Article  CAS  PubMed  Google Scholar 

  88. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34.

    Article  CAS  PubMed  Google Scholar 

  90. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.

    Article  CAS  PubMed  Google Scholar 

  92. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  93. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.

    Article  CAS  PubMed  Google Scholar 

  94. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

    Article  CAS  PubMed  Google Scholar 

  95. Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer. 2011;47(2):163–74.

    Article  CAS  PubMed  Google Scholar 

  96. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94(6):776–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ivey KN, Srivastava D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell. 2010;7(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  98. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci. 2007;32(4):189–97.

    Article  CAS  PubMed  Google Scholar 

  99. Dumortier O, Hinault C, Van Obberghen E. MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013;18(3):312–24.

    Article  CAS  PubMed  Google Scholar 

  100. Goedeke L, Fernandez-Hernando C. MicroRNAs: a connection between cholesterol metabolism and neurodegeneration. Neurobiol Dis. 2014;72 Pt A:48–53.

    Article  PubMed  CAS  Google Scholar 

  101. Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108(22):9232–7. doi:10.1073/pnas.1102281108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. de Aguiar Vallim TQ, Tarling EJ, Kim T, Civelek M, Baldan A, Esau C, et al. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ Res. 2013;112(12):1602–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896–9.

    Article  CAS  PubMed  Google Scholar 

  104. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3(2):87–98.

    Article  CAS  PubMed  Google Scholar 

  105. Gerin I, Clerbaux LA, Haumont O, Lanthier N, Das AK, Burant CF, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem. 2010;285(44):33652–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamorro-Jorganes A, Ramirez CM, et al. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol. 2013;33(11):2339–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A. 2013;107(40):17321–6.

    Article  Google Scholar 

  108. Kim J, Yoon H, Ramirez CM, Lee SM, Hoe HS, Fernandez-Hernando C, et al. MiR-106b impairs cholesterol efflux and increases Abeta levels by repressing ABCA1 expression. Exp Neurol. 2012;235(2):476–83.

    Article  CAS  PubMed  Google Scholar 

  109. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9. doi:10.1126/science.1189123.

    Article  CAS  PubMed  Google Scholar 

  110. Ramirez CM, Davalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011;31(11):2707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ramirez CM, Rotllan N, Vlassov AV, Davalos A, Li M, Goedeke L, et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112(12):1592–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–3. doi:10.1126/science.1189862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A. 2010;107(40):17321–6. doi:10.1073/pnas.1008499107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107(27):12228–32. doi:10.1073/pnas.1005191107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Naar AM. Anti-atherosclerosis or no anti-atherosclerosis: that is the miR-33 question. Arterioscler Thromb Vasc Biol. 2013;33(3):447–8.

    Article  PubMed  CAS  Google Scholar 

  116. Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun. 2013;4:2883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Thomas M, Lange-Grunweller K, Weirauch U, Gutsch D, Aigner A, Grunweller A, et al. The proto-oncogene Pim-1 is a target of miR-33a. Oncogene. 2012;31(7):918–28. doi:10.1038/onc.2011.278.

    Article  CAS  PubMed  Google Scholar 

  118. Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011;71(15):5214–24.

    Article  CAS  PubMed  Google Scholar 

  119. Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramirez CM, Chamorro-Jorganes A, et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle (Georgetown Tex). 2012;11(5):922–33.

    Article  CAS  Google Scholar 

  120. Xiao W, Bao ZX, Zhang CY, Zhang XY, Shi LJ, Zhou ZT, et al. Upregulation of miR-31* is negatively associated with recurrent/newly formed oral leukoplakia. PLoS ONE. 2012;7(6):e38648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhou Y, Huang Z, Wu S, Zang X, Liu M, Shi J. miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. J Exp Clin Cancer Res. 2014;33:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Eom HJ, Chatterjee N, Lee J, Choi J. Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions. Toxicol Lett. 2014;229(1):311–8.

    Article  CAS  PubMed  Google Scholar 

  123. Cui FM, Li JX, Chen Q, Du HB, Zhang SY, Nie JH, et al. Radon-induced alterations in micro-RNA expression profiles in transformed BEAS2B cells. J Toxicol Environ Health. 2013;76(2):107–19.

    Article  CAS  Google Scholar 

  124. Adlakha YK, Saini N. MicroRNA-128 downregulates Bax and induces apoptosis in human embryonic kidney cells. Cell Mol Life Sci. 2011;68(8):1415–28. doi:10.1007/s00018-010-0528-y.

    Article  CAS  PubMed  Google Scholar 

  125. Adlakha YK, Khanna S, Singh R, Singh VP, Agrawal A, Saini N. Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRalpha expression and cholesterol homeostasis. Cell Death Dis. 2013;4:e780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68(22):9125–30.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med (Berlin, Germany). 2009;87(1):43–51.

    Article  CAS  Google Scholar 

  128. Cui JG, Zhao Y, Sethi P, Li YY, Mahta A, Culicchia F, et al. Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation. J Neuro-Oncol. 2009;98(3):297–304.

    Article  CAS  Google Scholar 

  129. Evangelisti C, Florian MC, Massimi I, Dominici C, Giannini G, Galardi S, et al. MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J. 2009;23(12):4276–87.

    Article  CAS  PubMed  Google Scholar 

  130. Weiss GJ, Bemis LT, Nakajima E, Sugita M, Birks DK, Robinson WA, et al. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol. 2008;19(6):1053–9.

    Article  CAS  PubMed  Google Scholar 

  131. Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF. A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle (Georgetown Tex). 2010;9(6):1037–42.

    Article  CAS  Google Scholar 

  132. Khan AP, Poisson LM, Bhat VB, Fermin D, Zhao R, Kalyana-Sundaram S, et al. Quantitative proteomic profiling of prostate cancer reveals a role for miR-128 in prostate cancer. Mol Cell Proteomics. 2010;9(2):298–312.

    Article  CAS  PubMed  Google Scholar 

  133. Zhu Y, Yu F, Jiao Y, Feng J, Tang W, Yao H, et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res. 2011;17(22):7105–15.

    Article  CAS  PubMed  Google Scholar 

  134. Seca H, Lima RT, Almeida GM, Sobrinho-Simoes M, Bergantim R, Guimaraes JE, et al. Effect of miR-128 in DNA damage of HL-60 acute myeloid leukemia cells. Curr Pharm Biotechnol. 2014;15(5):492–502.

    Article  CAS  PubMed  Google Scholar 

  135. Donzelli S, Fontemaggi G, Fazi F, Di Agostino S, Padula F, Biagioni F, et al. MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ. 2012;19(6):1038–48.

    Article  CAS  PubMed  Google Scholar 

  136. Ji S, Shao G, Lv X, Liu Y, Fan Y, Wu A, et al. Downregulation of miRNA-128 sensitises breast cancer cell to chemodrugs by targeting Bax. Cell Biol Int. 2013;37(7):653–8.

    Article  CAS  PubMed  Google Scholar 

  137. Li X, Chen YT, Josson S, Mukhopadhyay NK, Kim J, Freeman MR, et al. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS ONE. 2013;8(8):e70987. doi:10.1371/journal.pone.0070987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Imam JS, Buddavarapu K, Lee-Chang JS, Ganapathy S, Camosy C, Chen Y, et al. MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene. 2010;29(35):4971–9.

    Article  CAS  PubMed  Google Scholar 

  139. Liu M, Lang N, Chen X, Tang Q, Liu S, Huang J, et al. miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett. 2011;301(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  140. Wang J, He J, Su F, Ding N, Hu W, Yao B, et al. Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation inhibition. Cell Death Dis. 2013;4:e699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li Q, Wang JX, He YQ, Feng C, Zhang XJ, Sheng JQ, et al. MicroRNA-185 regulates chemotherapeutic sensitivity in gastric cancer by targeting apoptosis repressor with caspase recruitment domain. Cell Death Dis. 2014;5:e1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ratovitski EA. Phospho-DeltaNp63alpha regulates AQP3, ALOX12B, CASP14 and CLDN1 expression through transcription and microRNA modulation. FEBS Lett. 2013;587(21):3581–6.

    Article  CAS  PubMed  Google Scholar 

  143. Xiang Y, Ma N, Wang D, Zhang Y, Zhou J, Wu G, et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene. 2014;33(3):378–86.

    Article  CAS  PubMed  Google Scholar 

  144. Wang L, Jia XJ, Jiang HJ, Du Y, Yang F, Si SY, et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol. 2013;33(10):1956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yang M, Liu W, Pellicane C, Sahyoun C, Joseph BK, Gallo-Ebert C, et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J Lipid Res. 2014;55(2):226–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Leivonen SK, Sahlberg KK, Makela R, Due EU, Kallioniemi O, Borresen-Dale AL, et al. High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol. 2014;8(1):93–104.

    Article  CAS  PubMed  Google Scholar 

  147. Cittelly DM, Das PM, Spoelstra NS, Edgerton SM, Richer JK, Thor AD, et al. Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer. 2010;9:317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. He YJ, Wu JZ, Ji MH, Ma T, Qiao EQ, Ma R, et al. miR-342 is associated with estrogen receptor-alpha expression and response to tamoxifen in breast cancer. Exp Ther Med. 2013;5(3):813–8.

    PubMed  PubMed Central  Google Scholar 

  149. Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH, Tsuchiya KD, et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene. 2008;27(27):3880–8.

    Article  CAS  PubMed  Google Scholar 

  150. Ballabio E, Mitchell T, van Kester MS, Taylor S, Dunlop HM, Chi J, et al. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential. Blood. 2010;116(7):1105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wei Y, Nazari-Jahantigh M, Chan L, Zhu M, Heyll K, Corbalan-Campos J, et al. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation. 2013;127(15):1609–19.

    Article  CAS  PubMed  Google Scholar 

  152. Wang L, Xu L, Xu M, Liu G, Xing J, Sun C, et al. Obesity-associated MiR-342-3p promotes adipogenesis of mesenchymal stem cells by suppressing CtBP2 and releasing C/EBPalpha from CtBP2 binding. Cell Physiol Biochem. 2015;35(6):2285–98.

    Article  CAS  PubMed  Google Scholar 

  153. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A. 2008;105(36):13421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rokhlin OW, Scheinker VS, Taghiyev AF, Bumcrot D, Glover RA, Cohen MB. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biol Ther. 2008;7(8):1288–96.

    Article  CAS  PubMed  Google Scholar 

  156. Ramaiah MJ, Pushpavalli SN, Lavanya A, Bhadra K, Haritha V, Patel N, et al. Novel anthranilamide-pyrazolo[1,5-a]pyrimidine conjugates modulate the expression of p53-MYCN associated micro RNAs in neuroblastoma cells and cause cell cycle arrest and apoptosis. Bioorg Med Chem Lett. 2013;23(20):5699–706.

    Article  CAS  PubMed  Google Scholar 

  157. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle (Georgetown Tex). 2007;6(13):1586–93.

    Article  CAS  Google Scholar 

  158. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17(15):1298–307.

    Article  CAS  PubMed  Google Scholar 

  159. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26(5):731–43.

    Article  CAS  PubMed  Google Scholar 

  161. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26(34):5017–22.

    Article  CAS  PubMed  Google Scholar 

  162. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE. 2009;4(8):e6816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Dalgard CL, Gonzalez M, deNiro JE, O’Brien JM. Differential microRNA-34a expression and tumor suppressor function in retinoblastoma cells. Invest Ophthalmol Vis Sci. 2009;50(10):4542–51.

    Article  PubMed  Google Scholar 

  164. Merkel O, Asslaber D, Pinon JD, Egle A, Greil R. Interdependent regulation of p53 and miR-34a in chronic lymphocytic leukemia. Cell Cycle (Georgetown Tex). 2010;9(14):2764–8.

    Article  CAS  Google Scholar 

  165. Niederer F, Trenkmann M, Ospelt C, Karouzakis E, Neidhart M, Stanczyk J, et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 2012;64(6):1771–9.

    Article  CAS  PubMed  Google Scholar 

  166. Garofalo M, Jeon YJ, Nuovo GJ, Middleton J, Secchiero P, Joshi P, et al. MiR-34a/c-dependent PDGFR-alpha/beta downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer. PLoS ONE. 2013;8(6):e67581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007;67(18):8433–8.

    Article  CAS  PubMed  Google Scholar 

  168. Tanaka N, Toyooka S, Soh J, Kubo T, Yamamoto H, Maki Y, et al. Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer. Lung Cancer (Amsterdam, Netherlands). 2012;76(1):32–8.

    Article  Google Scholar 

  169. Wang LG, Ni Y, Su BH, Mu XR, Shen HC, Du JJ. MicroRNA-34b functions as a tumor suppressor and acts as a nodal point in the feedback loop with Met. Int J Oncol. 2013;42(3):957–62.

    CAS  PubMed  Google Scholar 

  170. Balca-Silva J, Sousa Neves S, Goncalves AC, Abrantes AM, Casalta-Lopes J, Botelho MF, et al. Effect of miR-34b overexpression on the radiosensitivity of non-small cell lung cancer cell lines. Anticancer Res. 2012;32(5):1603–9.

    CAS  PubMed  Google Scholar 

  171. Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res. 2010;16(4):1119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D, et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer. 2008;8:266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology (Baltimore Md). 2008;48(6):1810–20.

    Article  CAS  Google Scholar 

  174. Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS ONE. 2011;6(8):e23937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 2011;48(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  176. Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta Int J Clin Chem. 2013;424:99–103.

    Article  CAS  Google Scholar 

  177. Lee J, Padhye A, Sharma A, Song G, Miao J, Mo YY, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem. 2010;285(17):12604–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou H, Maher J, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 2012;15(5):665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev. 2012;13(4):239–50.

    Article  CAS  Google Scholar 

  180. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9(4):327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007;28(1):91–106.

    Article  PubMed  CAS  Google Scholar 

  182. Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010;285(44):33959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010;24(13):1403–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li WQ, Chen C, Xu MD, Guo J, Li YM, Xia QM, et al. The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats. FEBS J. 2011;278(9):1522–32.

    Article  CAS  PubMed  Google Scholar 

  185. Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res. 2008;68(20):8191–4.

    Article  CAS  PubMed  Google Scholar 

  186. Li KK, Xia T, Ma FM, Zhang R, Mao Y, Wang Y, et al. miR-106b is overexpressed in medulloblastomas and interacts directly with PTEN. Neuropathol Appl Neurobiol. 2014;41(2):145–64.

    Article  CAS  Google Scholar 

  187. Liu F, Gong J, Huang W, Wang Z, Wang M, Yang J, et al. MicroRNA-106b-5p boosts glioma tumorigensis by targeting multiple tumor suppressor genes. Oncogene. 2013;33(40):4813–22.

    Article  PubMed  CAS  Google Scholar 

  188. Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG, et al. Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci. 2009;100(7):1234–42.

    Article  CAS  PubMed  Google Scholar 

  189. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A. 2008;105(35):12885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang A, Hao J, Wang K, Huang Q, Yu K, Kang C, et al. Down-regulation of miR-106b suppresses the growth of human glioma cells. J Neuro-Oncol. 2013;112(2):179–89.

    Article  CAS  Google Scholar 

  191. Wang PY, Li YJ, Zhang S, Li ZL, Yue Z, Xie N, et al. Regulating A549 cells growth by ASO inhibiting miRNA expression. Mol Cell Biochem. 2010;339(1–2):163–71.

    Article  CAS  PubMed  Google Scholar 

  192. Ni X, Xia T, Zhao Y, Zhou W, Wu N, Liu X, et al. Downregulation of miR-106b induced breast cancer cell invasion and motility in association with overexpression of matrix metalloproteinase 2. Cancer Sci. 2014;105(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  193. Hudson RS, Yi M, Esposito D, Glynn SA, Starks AM, Yang Y, et al. MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene. 2013;32(35):4139–47.

    Article  CAS  PubMed  Google Scholar 

  194. Li B, Shi XB, Nori D, Chao CK, Chen AM, Valicenti R, et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate. 2011;71(6):567–74.

    Article  CAS  PubMed  Google Scholar 

  195. Liu Z, Yang D, Xie P, Ren G, Sun G, Zeng X, et al. MiR-106b and MiR-15b modulate apoptosis and angiogenesis in myocardial infarction. Cell Physiol Biochem. 2012;29(5–6):851–62.

    Article  CAS  PubMed  Google Scholar 

  196. Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y, et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology. 2009;136(5):1689–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hebert SS, Horre K, Nicolai L, Bergmans B, Papadopoulou AS, Delacourte A, et al. MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis. 2009;33(3):422–8.

    Article  CAS  PubMed  Google Scholar 

  198. Wahrle SE, Jiang H, Parsadanian M, Kim J, Li A, Knoten A, et al. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest. 2008;118(2):671–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Sabirzhanov B, Zhao Z, Stoica BA, Loane DJ, Wu J, Borroto C, et al. Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J Neurosci. 2014;34(30):10055–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Feng SY, Dong CG, Wu WK, Wang XJ, Qiao J, Shao JF. Lentiviral expression of anti-microRNAs targeting miR-27a inhibits proliferation and invasiveness of U87 glioma cells. Mol Med Rep. 2012;6(2):275–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Jutooru I, Guthrie AS, Chadalapaka G, Pathi S, Kim K, Burghardt R, et al. Mechanism of action of phenethylisothiocyanate and other reactive oxygen species-inducing anticancer agents. Mol Cell Biol. 2014;34(13):2382–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Xia J, Cheng L, Mei C, Ma J, Shi Y, Zeng F, et al. Genistein inhibits cell growth and invasion through regulation of miR-27a in pancreatic cancer cells. Curr Pharm Des. 2014;20(33):5348–53.

    Article  CAS  PubMed  Google Scholar 

  203. Gandhy SU, Kim K, Larsen L, Rosengren RJ, Safe S. Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer. 2012;12:564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pathi SS, Jutooru I, Chadalapaka G, Sreevalsan S, Anand S, Thatcher GR, et al. GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species-microRNA-27a: ZBTB10-specificity protein pathway. Mol Cancer Res. 2011;9(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  205. Liu X, Jutooru I, Lei P, Kim K, Lee SO, Brents LK, et al. Betulinic acid targets YY1 and ErbB2 through cannabinoid receptor-dependent disruption of microRNA-27a:ZBTB10 in breast cancer. Mol Cancer Ther. 2012;11(7):1421–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Li Z, Hu S, Wang J, Cai J, Xiao L, Yu L, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol. 2010;119(1):125–30.

    Article  CAS  PubMed  Google Scholar 

  207. Chen L, Li H, Han L, Zhang K, Wang G, Wang Y, et al. Expression and function of miR-27b in human glioma. Oncol Rep. 2011;26(6):1617–21.

    CAS  PubMed  Google Scholar 

  208. Xu Y, Zhou M, Wang J, Zhao Y, Li S, Zhou B, et al. Role of microRNA-27a in down-regulation of angiogenic factor AGGF1 under hypoxia associated with high-grade bladder urothelial carcinoma. Biochim Biophys Acta. 2014;1842(5):712–25.

    Article  CAS  PubMed  Google Scholar 

  209. Wu XJ, Li Y, Liu D, Zhao LD, Bai B, Xue MH. miR-27a as an oncogenic microRNA of hepatitis B virus- related hepatocellular carcinoma. Asian Pac J Cancer Prev. 2013;14(2):885–9.

    Article  PubMed  Google Scholar 

  210. Chen Q, Xu J, Li L, Li H, Mao S, Zhang F, et al. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis. 2014;5:e1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang JM, Tao J, Chen DD, Cai JJ, Irani K, Wang Q, et al. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2014;34(1):99–109.

    Article  PubMed  CAS  Google Scholar 

  212. Guo D, Li Q, Lv Q, Wei Q, Cao S, Gu J. MiR-27a targets sFRP1 in hFOB cells to regulate proliferation, apoptosis and differentiation. PLoS ONE. 2014;9(3):e91354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Liu G, Cao P, Chen H, Yuan W, Wang J, Tang X. MiR-27a regulates apoptosis in nucleus pulposus cells by targeting PI3K. PLoS ONE. 2013;8(9):e75251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chen Z, Ma T, Huang C, Zhang L, Lv X, Xu T, et al. MiR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/beta-catenin pathway in hepatocellular carcinoma cells. Cell Signal. 2013;25(12):2693–701.

    Article  CAS  PubMed  Google Scholar 

  215. Scheibner KA, Teaboldt B, Hauer MC, Chen X, Cherukuri S, Guo Y, et al. MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3theta. PLoS ONE. 2012;7(12):e50895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Chhabra R, Adlakha YK, Hariharan M, Scaria V, Saini N. Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS ONE. 2009;4(6):e5848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Wang B, Li D, Kovalchuk A, Litvinov D, Kovalchuk O. Ionizing radiation-inducible miR-27b suppresses leukemia proliferation via targeting cyclin A2. Int J Radiat Oncol Biol Phys. 2014;90(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  218. Rastogi N, Gara RK, Trivedi R, Singh A, Dixit P, Maurya R, et al. (6)-Gingerolinduced myeloid leukemia cell death is initiated by reactive oxygen species and activation of miR-27b expression. Free Radic Biol Med. 2014;68:288–301.

    Article  CAS  PubMed  Google Scholar 

  219. Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis. 2014;234(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  220. Kang MH, Zhang LH, Wijesekara N, de Haan W, Butland S, Bhattacharjee A, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol. 2013;33(12):2724–32.

    Article  CAS  PubMed  Google Scholar 

  221. Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun. 2009;390(2):247–51.

    Article  CAS  PubMed  Google Scholar 

  222. Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW, et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun. 2010;392(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  223. Nishi H, Ono K, Horie T, Nagao K, Kinoshita M, Kuwabara Y, et al. MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor beta1 in neonatal rat ventricular myocytes. Mol Cell Biol. 2011;31(4):744–55.

    Article  CAS  PubMed  Google Scholar 

  224. Erion MD, Cable EE, Ito BR, Jiang H, Fujitaki JM, Finn PD, et al. Targeting thyroid hormone receptor-beta agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc Natl Acad Sci U S A. 2007;104(39):15490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. John K, Hadem J, Krech T, Wahl K, Manns MP, Dooley S, et al. MicroRNAs play a role in spontaneous recovery from acute liver failure. Hepatology (Baltimore Md). 2014;60(4):1346–55.

    Article  CAS  Google Scholar 

  226. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Villanueva RA, Jangra RK, Yi M, Pyles R, Bourne N, Lemon SM. miR-122 does not modulate the elongation phase of hepatitis C virus RNA synthesis in isolated replicase complexes. Antivir Res. 2010;88(1):119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 2007;67(13):6092–9.

    Article  CAS  PubMed  Google Scholar 

  229. Borel F, Konstantinova P, Jansen PL. Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. J Hepatol. 56 Suppl 6:1371–83.

  230. Nassirpour R, Mehta PP, Yin MJ. miR-122 regulates tumorigenesis in hepatocellular carcinoma by targeting AKT3. PLoS ONE. 2013;8(11):e79655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology (Baltimore Md). 2009;49(5):1571–82.

    Article  CAS  Google Scholar 

  232. Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 2008;375(3):315–20.

    Article  CAS  PubMed  Google Scholar 

  233. Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q, et al. MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/beta-catenin pathway. Liver Int. 2012;32(5):752–60.

    Article  CAS  PubMed  Google Scholar 

  234. Xu H, He JH, Xiao ZD, Zhang QQ, Chen YQ, Zhou H, et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. Hepatology (Baltimore Md). 2010;52(4):1431–42.

    Article  CAS  Google Scholar 

  235. Ma L, Liu J, Shen J, Liu L, Wu J, Li W, et al. Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells. Cancer Biol Ther. 2010;9(7):554–61.

    Article  CAS  PubMed  Google Scholar 

  236. Li C, Wang Y, Wang S, Wu B, Hao J, Fan H, et al. Hepatitis B virus mRNA-mediated miR-122 inhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cell invasion. J Virol. 2013;87(4):2193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Young DD, Connelly CM, Grohmann C, Deiters A. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc. 2010;132(23):7976–81.

    Article  CAS  PubMed  Google Scholar 

  238. Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2009;69(14):5761–7.

    Article  CAS  PubMed  Google Scholar 

  239. Chen Y, Wang C, Liu Y, Tang L, Zheng M, Xu C, et al. miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease. Biochem Biophys Res Commun. 2013;438(1):133–9.

    Article  CAS  PubMed  Google Scholar 

  240. Manfe V, Biskup E, Rosbjerg A, Kamstrup M, Skov AG, Lerche CM, et al. miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma. PLoS ONE. 2012;7(1):e29541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett. 2011;310(2):160–9.

    CAS  PubMed  Google Scholar 

  242. Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012;122(8):2871–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008;36(4):1153–62.

    Article  CAS  PubMed  Google Scholar 

  244. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9.

    Article  PubMed  CAS  Google Scholar 

  245. Castoldi M, Vujic Spasic M, Altamura S, Elmen J, Lindow M, Kiss J, et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J Clin Invest. 2011;121(4):1386–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science (New York NY). 2010;327(5962):198–201.

    Article  CAS  Google Scholar 

  247. Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122(8):2884–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Lewis AP, Jopling CL. Regulation and biological function of the liver-specific miR-122. Biochem Soc Trans. 2010;38(6):1553–7.

    Article  CAS  PubMed  Google Scholar 

  249. Gao W, He HW, Wang ZM, Zhao H, Lian XQ, Wang YS, et al. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis. 2012;11:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Boutz DR, Collins PJ, Suresh U, Lu M, Ramirez CM, Fernandez-Hernando C, et al. Two-tiered approach identifies a network of cancer and liver disease-related genes regulated by miR-122. J Biol Chem. 2011;286(20):18066–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest. 2013;123(1):11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.

    Article  CAS  PubMed  Google Scholar 

  253. Hydbring P, Badalian-Very G. Clinical applications of microRNAs. F1000Res. 2013;2:136.

    PubMed  PubMed Central  Google Scholar 

  254. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011;19(6):1116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Yu Y, Wang Y, Ren X, Tsuyada A, Li A, Liu LJ, et al. Context-dependent bidirectional regulation of the MutS homolog 2 by transforming growth factor beta contributes to chemoresistance in breast cancer cells. Mol Cancer Res. 2010;8(12):1633–42. doi:10.1158/1541-7786.MCR-10-0362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Yoshino T, Tabunoki H, Sugiyama S, Ishii K, Kim SU, Satoh J. Non-phosphorylated FTY720 induces apoptosis of human microglia by activating SREBP2. Cell Mol Neurobiol. 2011;31(7):1009–20. doi:10.1007/s10571-011-9698-x.

    Article  CAS  PubMed  Google Scholar 

  259. Lonergan PE, Tindall DJ. Androgen receptor signaling in prostate cancer development and progression. J Carcinog. 2011;10:20. doi:10.4103/1477-3163.83937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Davalos A, Suarez Y. MiRNA-based therapy: from bench to bedside. Pharmacol Res. 2013;75:1–2.

    Article  PubMed  Google Scholar 

  261. Wishart DS. Is cancer a genetic disease or a metabolic disease? EBioMedicine. 2015;2(6):478–9.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Gabitova L, Gorin A, Astsaturov I. Molecular pathways: sterols and receptor signaling in cancer. Clin Cancer Res. 2014;20(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  263. Gabitova L, Restifo D, Gorin A, Manocha K, Handorf E, Yang DH, et al. Endogenous sterol metabolites regulate growth of EGFR/KRAS-dependent tumors via LXR. Cell Rep. 2015;12(11):1927–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Shim EH, Sudarshan S. Another small molecule in the oncometabolite mix: L-2-Hydroxyglutarate in kidney cancer. Oncoscience. 2015;2(5):483–6.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Alwaili K, Awan Z, Alshahrani A, Genest J. High-density lipoproteins and cardiovascular disease: 2010 update. Expert Rev Cardiovasc Ther. 2010;8(3):413–23. doi:10.1586/erc.10.4.

    Article  CAS  PubMed  Google Scholar 

  266. Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med (Cambridge Mass). 1998;4(3):165–78.

    CAS  Google Scholar 

  267. Silva J, Beckedorf A, Bieberich E. Osteoblast-derived oxysterol is a migration-inducing factor for human breast cancer cells. J Biol Chem. 2003;278(28):25376–85. doi:10.1074/jbc.M301233200.

    Article  CAS  PubMed  Google Scholar 

  268. Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, et al. 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep. 2013;5(3):637–45. doi:10.1016/j.celrep.2013.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Sponne I, Fifre A, Koziel V, Oster T, Olivier JL, Pillot T. Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of amyloid-beta peptide. FASEB J. 2004;18(7):836–8.

    CAS  PubMed  Google Scholar 

  270. Edwards CJ, Spector TD. Statins as modulators of bone formation. Arthritis Res. 2002;4(3):151–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Jazvinscak Jembrek M, Hof PR, Simic G. Ceramides in Alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and Abeta accumulation. Oxidative Med Cell Longev. 2015;2015:346783. doi:10.1155/2015/346783.

    Article  Google Scholar 

  272. Mineo C, Shaul PW. Novel biological functions of high-density lipoprotein cholesterol. Circ Res. 2012;111(8):1079–90. doi:10.1161/CIRCRESAHA.111.258673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Colell A, Fernandez A, Fernandez-Checa JC. Mitochondria, cholesterol and amyloid beta peptide: a dangerous trio in Alzheimer disease. J Bioenerg Biomembr. 2009;41(5):417–23. doi:10.1007/s10863-009-9242-6.

    Article  CAS  PubMed  Google Scholar 

  274. Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, et al. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest. 1999;103(1):137–45. doi:10.1172/JCI4765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Yerushalmi B, Dahl R, Devereaux MW, Gumpricht E, Sokol RJ. Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology (Baltimore Md). 2001;33(3):616–26.

    Article  CAS  Google Scholar 

  276. Lizard G, Monier S, Cordelet C, Gesquiere L, Deckert V, Gueldry S, et al. Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7beta-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall. Arterioscler Thromb Vasc Biol. 1999;19(5):1190–200.

    Article  CAS  PubMed  Google Scholar 

  277. Nishio E, Watanabe Y. Oxysterols induced apoptosis in cultured smooth muscle cells through CPP32 protease activation and bcl-2 protein downregulation. Biochem Biophys Res Commun. 1996;226(3):928–34. doi:10.1006/bbrc.1996.1452.

    Article  CAS  PubMed  Google Scholar 

  278. Aupeix K, Weltin D, Mejia JE, Christ M, Marchal J, Freyssinet JM, et al. Oxysterol-induced apoptosis in human monocytic cell lines. Immunobiology. 1995;194(4–5):415–28. doi:10.1016/S0171-2985(11)80108-7.

    Article  CAS  PubMed  Google Scholar 

  279. Luegmayr E, Glantschnig H, Wesolowski GA, Gentile MA, Fisher JE, Rodan GA, et al. Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ. 2004;11 Suppl 1:S108–18. doi:10.1038/sj.cdd.4401399.

    Article  CAS  PubMed  Google Scholar 

  280. Calleros L, Lasa M, Rodriguez-Alvarez FJ, Toro MJ, Chiloeches A. RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion. Apoptosis. 2006;11(7):1161–73. doi:10.1007/s10495-006-6980-3.

    Article  CAS  PubMed  Google Scholar 

  281. Satoh T, Isobe H, Ayukawa K, Sakai H, Nawata H. The effects of pravastatin, an HMG-CoA reductase inhibitor, on cell viability and DNA production of rat hepatocytes. Life Sci. 1996;59(14):1103–8.

    Article  CAS  PubMed  Google Scholar 

  282. Blanco-Colio LM, Villa A, Ortego M, Hernandez-Presa MA, Pascual A, Plaza JJ, et al. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors, atorvastatin and simvastatin, induce apoptosis of vascular smooth muscle cells by downregulation of Bcl-2 expression and Rho A prenylation. Atherosclerosis. 2002;161(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  283. Boucher K, Siegel CS, Sharma P, Hauschka PV, Solomon KR. HMG-CoA reductase inhibitors induce apoptosis in pericytes. Microvasc Res. 2006;71(2):91–102. doi:10.1016/j.mvr.2005.11.007.

    Article  CAS  PubMed  Google Scholar 

  284. Cafforio P, Dammacco F, Gernone A, Silvestris F. Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis. 2005;26(5):883–91. doi:10.1093/carcin/bgi036.

    Article  CAS  PubMed  Google Scholar 

  285. Padayatty SJ, Marcelli M, Shao TC, Cunningham GR. Lovastatin-induced apoptosis in prostate stromal cells. J Clin Endocrinol Metab. 1997;82(5):1434–9.

    Article  CAS  PubMed  Google Scholar 

  286. Park HJ, Zhang Y, Georgescu SP, Johnson KL, Kong D, Galper JB. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev. 2006;2(2):93–102.

    Article  CAS  PubMed  Google Scholar 

  287. Demyanets S, Kaun C, Pfaffenberger S, Hohensinner PJ, Rega G, Pammer J, et al. Hydroxymethylglutaryl-coenzyme A reductase inhibitors induce apoptosis in human cardiac myocytes in vitro. Biochem Pharmacol. 2006;71(9):1324–30. doi:10.1016/j.bcp.2006.01.016.

    Article  CAS  PubMed  Google Scholar 

  288. Fromigue O, Hay E, Modrowski D, Bouvet S, Jacquel A, Auberger P, et al. RhoA GTPase inactivation by statins induces osteosarcoma cell apoptosis by inhibiting p42/p44-MAPKs-Bcl-2 signaling independently of BMP-2 and cell differentiation. Cell Death Differ. 2006;13(11):1845–56. doi:10.1038/sj.cdd.4401873.

    Article  CAS  PubMed  Google Scholar 

  289. Guijarro C, Blanco-Colio LM, Ortego M, Alonso C, Ortiz A, Plaza JJ, et al. 3-Hydroxy-3-methylglutaryl coenzyme a reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res. 1998;83(5):490–500.

    Article  CAS  PubMed  Google Scholar 

  290. Nagashima T, Okazaki H, Yudoh K, Matsuno H, Minota S. Apoptosis of rheumatoid synovial cells by statins through the blocking of protein geranylgeranylation: a potential therapeutic approach to rheumatoid arthritis. Arthritis Rheum. 2006;54(2):579–86. doi:10.1002/art.21564.

    Article  CAS  PubMed  Google Scholar 

  291. Zhong WB, Wang CY, Chang TC, Lee WS. Lovastatin induces apoptosis of anaplastic thyroid cancer cells via inhibition of protein geranylgeranylation and de novo protein synthesis. Endocrinology. 2003;144(9):3852–9. doi:10.1210/en.2003-0098.

    Article  CAS  PubMed  Google Scholar 

  292. Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A. 2001;98(10):5856–61. doi:10.1073/pnas.081620098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Pedrini S, Carter TL, Prendergast G, Petanceska S, Ehrlich ME, Gandy S. Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Med. 2005;2(1):e18. doi:10.1371/journal.pmed.0020018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Shinohara M, Sato N, Kurinami H, Takeuchi D, Takeda S, Shimamura M, et al. Reduction of brain beta-amyloid (Abeta) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Abeta clearance. J Biol Chem. 2010;285(29):22091–102. doi:10.1074/jbc.M110.102277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Ponce J, de la Ossa NP, Hurtado O, Millan M, Arenillas JF, Davalos A, et al. Simvastatin reduces the association of NMDA receptors to lipid rafts: a cholesterol-mediated effect in neuroprotection. Stroke. 2008;39(4):1269–75. doi:10.1161/STROKEAHA.107.498923.

    Article  CAS  PubMed  Google Scholar 

  296. Sun L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism. 2014;63(2):272–82. doi:10.1016/j.metabol.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  297. Adlakha YK, Saini N. miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis. Cell Death Dis. 2013;4:e542. doi:10.1038/cddis.2013.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(Database issue):D98–104. doi:10.1093/nar/gkn714.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge INSPIRE Faculty fellowship awarded to Y.K.A (Code-IFA 13-LSBM-90) by the Department of Science and Technology and Indian National Science Academy (INSA), India, and National Brain Research Centre (NBRC) core funds, Manesar. We also acknowledge GENCODE-C, BSC0123 from the Council of Scientific and Industrial Research (CSIR). The funding agency had no role in the writing of the manuscript or in the decision to submit the article for publication. The authors apologize for their inability to discuss and cite all relevant papers owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yogita K. Adlakha or Neeru Saini.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 17.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adlakha, Y.K., Saini, N. MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumor Biol. 37, 8529–8554 (2016). https://doi.org/10.1007/s13277-016-4988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4988-z

Keywords

Navigation