Skip to main content

Advertisement

Log in

miR-29a suppresses growth and metastasis in papillary thyroid carcinoma by targeting AKT3

  • Original Article
  • Published:
Tumor Biology

Abstract

MicroRNA-29a (miR-29a) has been reported to play important roles in tumor initiation, development, and metastasis in various cancers. However, the biological function and potential mechanisms of miR-29a in papillary thyroid carcinoma (PTC) remain unclear. In the present study, we discovered that miR-29a was frequently downregulated in PTC tissues, and its expression was significantly associated with tumor size, TNM stage, and lymph node metastasis. Functional assays showed that overexpression of miR-29a markedly suppressed PTC cell proliferation, migration, and invasion and promoted PTC apoptosis and cell cycle arrest at G0/G1 phase. In vivo, miR-29a overexpression decreased tumor growth in a xenograft mouse model. Luciferase reporter assay showed that miR-29a can directly bind to the 3′ untranslated region (UTR) of AKT3 in PTC cells. Overexpreesion of miR‑29a obviously decreased AKT3 expression, thereby suppressing phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation. We also confirmed that AKT3 expression was increased in PTC tissue and was inversely correlated miR-29a expression in PTC tissues. In addition, downregulation of AKT3 by siRNA mimicked the effects of miR-29a overexpression, and upregulation of AKT3 partially reversed the inhibitory effects of miR-29a. These results suggested that miR-29a could act as a tumor suppressor in PTC by targeting AKT3 and that miR-29a may potentially serve as an anti-tumor agent in the treatment of PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brown RL, de Souza JA, Cohen EE. Thyroid cancer: burden of illness and management of disease. J Cancer. 2011;2:193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pitoia F, Bueno F, Urciuoli C, Abelleira E, Cross G, Tuttle RM. Outcomes of patients with differentiated thyroid cancer risk-stratified according to the American thyroid association and Latin American thyroid society risk of recurrence classification systems. Thyroid Off J Am Thyroid Assoc. 2013;23:1401–7.

    Article  Google Scholar 

  3. Grant CS. Recurrence of papillary thyroid cancer after optimized surgery. Gland Surg. 2015;4:52–62.

    PubMed  PubMed Central  Google Scholar 

  4. Brennecke J, Cohen SM. Towards a complete description of the microrna complement of animal genomes. Genome Biol. 2003;4:228.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ambros V. The functions of animal micrornas. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP. Micrornas: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  7. Carthew RW, Sontheimer EJ. Origins and mechanisms of mirnas and sirnas. Cell. 2009;136:642–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Esquela-Kerscher A, Slack FJ. Oncomirs - micrornas with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  9. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D. Microrna expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  10. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microrna expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Zhang X, Li H, Yu J, Ren X. The role of mirna-29 family in cancer. Eur J Cell Biol. 2013;92:123–8.

    Article  CAS  PubMed  Google Scholar 

  12. Cui Y, Su WY, Xing J, Wang YC, Wang P, Chen XY, et al. Mir-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS One. 2011;6:e25872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trehoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-rnas mir-29a and mir-330-5p function as tumor suppressors by targeting the muc1 mucin in pancreatic cancer cells. Biochim Biophys Acta. 1853;2015:2392–403.

    Google Scholar 

  14. Li Y, Kong D, Ahmad A, Bao B, Dyson G, Sarkar FH. Epigenetic deregulation of mir-29a and mir-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics. 2012;7:940–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhong S, Li W, Chen Z, Xu J, Zhao J. Mir-222 and mir-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531:8–14.

    Article  CAS  PubMed  Google Scholar 

  16. Qiu F, Sun R, Deng N, Guo T, Cao Y, Yu Y, et al. Mir-29a/b enhances cell migration and invasion in nasopharyngeal carcinoma progression by regulating sparc and col3a1 gene expression. PLoS One. 2015;10:e0120969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao D, Jiang X, Yao C, Zhang L, Liu H, Xia H, et al. Heat shock protein 47 regulated by mir-29a to enhance glioma tumor growth and invasion. J Neuro-Oncol. 2014;118:39–47.

    Article  CAS  Google Scholar 

  18. Zhu C, Wang Y, Kuai W, Sun X, Chen H, Hong Z. Prognostic value of mir-29a expression in pediatric acute myeloid leukemia. Clin Biochem. 2013;46:49–53.

    Article  CAS  PubMed  Google Scholar 

  19. Kang SS, Kwon T, Kwon DY, Do SI. Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem. 1999;274:13085–90.

    Article  CAS  PubMed  Google Scholar 

  20. de la Chapelle A, Jazdzewski K. Micrornas in thyroid cancer. J Clin Endocrinol Metab. 2011;96:3326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiang CH, Hou MF, Hung WC. Up-regulation of mir-182 by beta-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor reck. Biochim Biophys Acta. 1830;2013:3067–76.

    Google Scholar 

  22. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, et al. Micrornas (mir)-221 and mir-222, both overexpressed in human thyroid papillary carcinomas, regulate p27kip1 protein levels and cell cycle. Endocr-Relat Cancer. 2007;14:791–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mardente S, Mari E, Consorti F, Di Gioia C, Negri R, Etna M, et al. Hmgb1 induces the overexpression of mir-222 and mir-221 and increases growth and motility in papillary thyroid cancer cells. Oncol Rep. 2012;28:2285–9.

    CAS  PubMed  Google Scholar 

  24. Zhang X, Li M, Zuo K, Li D, Ye M, Ding L, et al. Upregulated mir-155 in papillary thyroid carcinoma promotes tumor growth by targeting apc and activating wnt/beta-catenin signaling. J Clin Endocrinol Metab. 2013;98:E1305–13.

    Article  CAS  PubMed  Google Scholar 

  25. Ma Y, Qin H, Cui Y. Mir-34a targets gas1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via pi3k/akt/bad pathway. Biochem Biophys Res Commun. 2013;441:958–63.

    Article  CAS  PubMed  Google Scholar 

  26. Liu L, Wang J, Li X, Ma J, Shi C, Zhu H, et al. Mir-204-5p suppresses cell proliferation by inhibiting igfbp5 in papillary thyroid carcinoma. Biochem Biophys Res Commun. 2015;457:621–6.

    Article  CAS  PubMed  Google Scholar 

  27. Gu L, Sun W. Mir-539 inhibits thyroid cancer cell migration and invasion by directly targeting CARMA1. Biochem Biophys Res Commun. 2015;464: 1128–33.

  28. Guan H, Liang W, Xie Z, Li H, Liu J, Liu L, et al. Down-regulation of mir-144 promotes thyroid cancer cell invasion by targeting zeb1 and zeb2. Endocrine. 2015;48:566–74.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang H, Zhang G, Wu JH, Jiang CP. Diverse roles of mir-29 in cancer (review). Oncol Rep. 2014;31:1509–16.

    CAS  PubMed  Google Scholar 

  30. Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, Tagliaferri P, et al. Mir-29s: a family of epi-mirnas with therapeutic implications in hematologic malignancies. Oncotarget. 2015;6:12837–61.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rostas 3rd JW, Pruitt HC, Metge BJ, Mitra A, Bailey SK, Bae S, et al. Microrna-29 negatively regulates emt regulator n-myc interactor in breast cancer. Mol Cancer. 2014;13:200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishikawa R, Goto Y, Kojima S, Enokida H, Chiyomaru T, Kinoshita T, et al. Tumor-suppressive microrna-29s inhibit cancer cell migration and invasion via targeting lamc1 in prostate cancer. Int J Oncol. 2014;45:401–10.

    CAS  PubMed  Google Scholar 

  33. Tan M, Wu J, Cai Y. Suppression of wnt signaling by the mir-29 family is mediated by demethylation of wif-1 in non-small-cell lung cancer. Biochem Biophys Res Commun. 2013;438:673–9.

    Article  CAS  PubMed  Google Scholar 

  34. Hers I, Vincent EE, Tavare JM. Akt signalling in health and disease. Cell Signal. 2011;23:1515–27.

    Article  CAS  PubMed  Google Scholar 

  35. Guo H, German P, Bai S, Barnes S, Guo W, Qi X, et al. The pi3k/akt pathway and renal cell carcinoma. J Genet Genomics = Yi Chuan Xue Bao. 2015;42:343–53.

    Article  PubMed  Google Scholar 

  36. Xia P, Xu XY. Pi3k/akt/mtor signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5:1602–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Petrulea MS, Plantinga TS, Smit JW, Georgescu CE, Netea-Maier RT. Pi3k/akt/mtor: a promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treat Rev. 2015;41:707–13.

  38. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/akt pathway in thyroid cancer. Thyroid Off J Am Thyroid Assoc. 2010;20:697–706.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Chen or Xiaofang Yu.

Ethics declarations

Conflicts of interest

None

Additional information

Guang Chen and Xiaofang Yu contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Liu, J., Li, Q. et al. miR-29a suppresses growth and metastasis in papillary thyroid carcinoma by targeting AKT3. Tumor Biol. 37, 3987–3996 (2016). https://doi.org/10.1007/s13277-015-4165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4165-9

Keywords

Navigation