Skip to main content

Advertisement

Log in

miR-106a* inhibits the proliferation of renal carcinoma cells by targeting IRS-2

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs play critical roles in the development and progression of human cancers. Although it has been reported that miR-106a* is downregulated in follicular lymphoma, its role in renal cell carcinoma (RCC) remains unknown. This study investigated the expression and role of miR-106a* in human RCC. Our results showed that the miR-106a* expression decreased dramatically in clinical RCC tissues and cell lines. In vitro, overexpression of miR-106a* suppressed RCC cell proliferation and S/G2 transition, whereas inhibition of miR-106a* promoted cell proliferation and S/G2 transition. It was also found that miR-106a* expression was inversely correlated with the expression of insulin receptor substrate 2 (IRS-2). IRS-2 was determined to be a direct target of miR-106a* by a luciferase reporter assay. Importantly, silencing IRS-2 resulted in the same biologic effects as those of miR-106a* overexpression in RCC cells, including inhibition of RCC cell proliferation and triggering of S/G2 cell cycle arrest with inhibition of the PI3K/Akt signaling pathway. These results indicate that miR-106a* affects RCC progression by targeting IRS-2 with suppression of the PI3K/Akt signaling pathway in RCC cells. The findings suggest miR-106a* as a novel strategy for RCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2013;63(1):11–30.

    Article  PubMed  Google Scholar 

  2. Yang FQ, Yang FP, Li W, Liu M, Wang GC, Che JP, et al. Foxl1 inhibits tumor invasion and predicts outcome in human renal cancer. Int J Clin Exp Pathol. 2013;7(1):110–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Russo P. Renal cell carcinoma: presentation, staging, and surgical treatment. Semin Oncol. 2000;27(2):160–76.

    CAS  PubMed  Google Scholar 

  4. Motzer RJ, Molina AM. Targeting renal cell carcinoma. J Clin Oncol. 2009;27(20):3274–6.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang H, Cheng Y, Jia C, Yu S, Xiao Y, Chen J. MicroRNA-29s could target AKT2 to inhibit gastric cancer cells invasion ability. Med Oncol. 2015;32(1):342.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Z, Zheng W, Hai J. MicroRNA-148b expression is decreased in hepatocellular carcinoma and associated with prognosis. Med Oncol. 2014;31(6):984.

    Article  CAS  PubMed  Google Scholar 

  7. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.

    Article  CAS  PubMed  Google Scholar 

  8. Su Z, Ni L, Yu W, Yu Z, Chen D, Zhang E, et al. MicroRNA-451a is associated with cell proliferation, migration and apoptosis in renal cell carcinoma. Mol Med Rep. 2015;11(3):2248–54.

    CAS  PubMed  Google Scholar 

  9. Chen Z, Tang ZY, He Y, Liu LF, Li DJ, Chen X. miRNA-205 is a candidate tumor suppressor that targets ZEB2 in renal cell carcinoma. Oncol Res Treat. 2014;37(11):658–64.

    Article  PubMed  Google Scholar 

  10. Wang W, Corrigan-Cummins M, Hudson J, Maric I, Simakova O, Neelapu SS, et al. MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica. 2012;97(4):586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE. Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem. 2003;278(28):25323–30.

    Article  CAS  PubMed  Google Scholar 

  12. Lee YH, White MF. Insulin receptor substrate proteins and diabetes. Arch Pharm Res. 2004;27(4):361–70.

    Article  CAS  PubMed  Google Scholar 

  13. Gibson SL, Ma Z, Shaw LM. Divergent roles for IRS-1 and IRS-2 in breast cancer metastasis. Cell Cycle. 2007;6(6):631–7.

    Article  CAS  PubMed  Google Scholar 

  14. White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002;283(3):E413–22.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao XM, Chen J, Yang L, Luo X, Xu LL, Liu DX, et al. Association between IRS-2 G1057D polymorphism and risk of gastric cancer. World J Gastrointest Oncol. 2012;4(1):9–15.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA, Zhang X, et al. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol. 2006;26(24):9302–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu G, Lai P, Liu M, Xu L, Guo Z, Liu H, et al. miR-203a regulates proliferation, migration, and apoptosis by targeting glycogen synthase kinase-3β in human renal cell carcinoma. Tumour Biol. 2014;35(11):11443–53.

    Article  CAS  PubMed  Google Scholar 

  18. Gopalan V, Pillai S, Ebrahimi F, Salajegheh A, Lam TC, Le TK, et al. Regulation of microRNA-1288 in colorectal cancer: altered expression and its clinicopathological significance. Mol Carcinog. 2013;53:E36–44.

    Article  PubMed  Google Scholar 

  19. Lang Q, Ling C. MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA. Biochem Biophys Res Commun. 2012;426(2):247–52.

    Article  CAS  PubMed  Google Scholar 

  20. Poudel S, Song J, Jin EJ, Song K. Sulfuretin-induced miR-30C selectively downregulates cyclin D1 and D2 and triggers cell death in human cancer cell lines. Biochem Biophys Res Commun. 2013;431(3):572–8.

    Article  CAS  PubMed  Google Scholar 

  21. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, et al. Identification of metastasis related microRNAs in hepatocellular carcinoma. Hepatology. 2008;47(3):897–907.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao LY, Yao Y, Han J, Yang J, Wang XF, Tong DD, et al. miR-638 suppresses cell proliferation in gastric cancer by targeting Sp2. Dig Dis Sci. 2014;59(8):1743–53.

    Article  CAS  PubMed  Google Scholar 

  23. Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008;48(6):2047–63.

    Article  CAS  PubMed  Google Scholar 

  24. Rossi JJ. New hope for a microRNA therapy for liver cancer. Cell. 2009;137(6):990–2.

    Article  CAS  PubMed  Google Scholar 

  25. Schnarr B, Strunz K, Ohsam J, Benner A, Wacker J, Mayer D. Downregulation of insulin-like growth factor-I receptor and insulin receptor substrate-1 expression in advanced human breast cancer. Int J Cancer. 2000;89(6):506–13.

    Article  CAS  PubMed  Google Scholar 

  26. Sisci D, Morelli C, Garofalo C, Romeo F, Morabito L, Casaburi F, et al. Expression of nuclear insulin receptor substrate 1 (IRS-1) in breast cancer. J Clin Pathol. 2007;60(6):633–41.

    Article  CAS  PubMed  Google Scholar 

  27. Han CH, Cho JY, Moon JT, Kim HJ, Kim SK, Shin DH, et al. Clinical significance of insulin receptor substrate-I down-regulation in non-small cell lung cancer. Oncol Rep. 2006;16(6):1205–10.

    PubMed  Google Scholar 

  28. Mardilovich K, Pankratz SL, Shaw LM. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal. 2009;7:14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kwon J, Stephan S, Mukhopadhyay A, Muders MH, Dutta SK, Lau JS, et al. Insulin receptor substrate-2 mediated insulin-like growth factor-I receptor overexpression in pancreatic adenocarcinoma through protein kinase Cdelta. Cancer Res. 2009;69(4):1350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Byron S, Horwitz K, Richer J, Lange C, Zhang X, Yee D. Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer. 2006;95(9):1220–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Day E, Poulogiannis G, McCaughan F, Mulholland S, Arends MJ, Ibrahim AE, et al. IRS-2 is a candidate driver oncogene on 13q34 in colorectal cancer. Int J Exp Pathol. 2013;94(3):203–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chan BT, Lee AV. Insulin receptor substrates (IRSs) and breast tumorigenesis. J Mammary Gland Biol Neoplasia. 2008;13(4):415–22.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Porter HA, Perry A, Kingsley C, Tran NL, Keegan AD. IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors. Cancer Lett. 2013;338(2):239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao L, Wang X, Wang X, Zhang L, Qiang C, Chang S, et al. IGF-1R, a target of let-7b, mediates crosstalk between IRS- 2/Akt and MAPK pathways to promote proliferation of oral squamous cell carcinoma. Oncotarget. 2014;5(9):2562–74.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Boissan M, Beurel E, Wendum D, Rey C, Lecluse Y, Housset C, et al. Overexpression of insulin receptor substrate-2 in human and murine hepatocellular carcinoma. Am J Pathol. 2005;167(3):869–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Briaud I, Dickson LM, Lingohr MK, McCuaig JF, Lawrence JC, Rhodes CJ. Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in beta-cells. J Biol Chem. 2005;280(3):2282–93.

    Article  CAS  PubMed  Google Scholar 

  37. Ando K, Fujita T. Role of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in the development of hypertensive organ damage. Clin Exp Nephrol. 2004;8(3):178–82.

    Article  CAS  PubMed  Google Scholar 

  38. Neid M, Datta K, Stephan S, Khanna I, Pal S, Shaw L, et al. Role of insulin receptor substrates and protein kinase C-zeta in vascular permeability factor/vascular endothelial growth factor expression in pancreatic cancer cells. J Biol Chem. 2004;279(6):3941–8.

    Article  CAS  PubMed  Google Scholar 

  39. Nagle JA, Ma Z, Byrne MA, White MF, Shaw LM. Involvement of insulin receptor substrate 2 in mammary tumor metastasis. Mol Cell Biol. 2004;24(22):9726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim B, Feldman EL. Insulin receptor substrate (IRS)-2, not IRS-1, protects human neuroblastoma cells against apoptosis. Apoptosis. 2009;14(5):665–73.

    Article  CAS  PubMed  Google Scholar 

  41. Szabolcs M, Keniry M, Simpson L, Reid LJ, Koujak S, Schiff SC, et al. Irs2 inactivation suppresses tumor progression in Pten +/- mice. Am J Pathol. 2009;174(1):276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Qi Chen for polishing the language in this manuscript.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhang, H., He, X. et al. miR-106a* inhibits the proliferation of renal carcinoma cells by targeting IRS-2. Tumor Biol. 36, 8389–8398 (2015). https://doi.org/10.1007/s13277-015-3605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3605-x

Keywords

Navigation