Skip to main content

Advertisement

Log in

Redox cycling of Cu(II) by 6-mercaptopurine leads to ROS generation and DNA breakage: possible mechanism of anticancer activity

  • Research Article
  • Published:
Tumor Biology

Abstract

6-Mercaptopurine (6MP) is a well-known purine antimetabolite used to treat childhood acute lymphoblastic leukemia and other diseases. Cancer cells as compared to normal cells are under increased oxidative stress and show high copper level. These differences between cancer cells and normal cells can be targeted to develop effective cancer therapy. Pro-oxidant property of 6MP in the presence of metal ions is not well documented. Redox cycling of Cu(II) to Cu(I) was found to be efficiently mediated by 6MP. We have performed a series of in vitro experiments to demonstrate the pro-oxidant property of 6MP in the presence of Cu(II). Studies on human lymphocytes confirmed the DNA damaging ability of 6MP in the presence of Cu(II). Since 6MP possesses DNA damaging ability by producing reactive oxygen species (ROS) in the presence of Cu(II), it may also possess apoptosis-inducing activity by involving endogenous copper ions. Essentially, this would be an alternative and copper-dependent pathway for anticancer activity of 6MP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lawrance IC. What is left when anti-tumour necrosis factor therapy in inflammatory bowel diseases fails? World J Gastroenterol. 2014;20:1248–58.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Scott FI, Osterman MT. Medical management of Crohn disease. Clin Colon Rectal Surg. 2013;26:67–74.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Frei P, Biedermann L, Nielsen OH, Rogler G. Use of thiopurines in inflammatory bowel disease. World J Gastroenterol. 2013;19:1040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elion GB. The purine path to chemotherapy. Science. 1989;244:41–7.

    Article  CAS  PubMed  Google Scholar 

  5. Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, Edwards M, et al. Role of post replicative DNA mismatch repair in the cytotoxic action of thioguanine. Science. 1996;273:1109–11.

    Article  CAS  PubMed  Google Scholar 

  6. Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999;94:2102–11.

    CAS  PubMed  Google Scholar 

  7. Serrano J, Palmeira CM, Kuehl DW, Wallace KB. Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochim Biophys Acta. 1999;1411:201–5.

    Article  CAS  PubMed  Google Scholar 

  8. Hug H, Strand S, Grambihler A, Galle J, Hack V, Stremmel W, et al. Reactive oxygen intermediates are involved in the induction of CD95 ligand mRNA expression by cytostatic drugs in hepatoma cells. J Biol Chem. 1997;272:28191–3.

    Article  CAS  PubMed  Google Scholar 

  9. Miyajima A, Nakashima J, Yoshioka K, Tachibana M, Tazaki H, Murai M. Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells. Br J Cancer. 1997;76:206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hadi SM, Bhat SH, Azmi AS, Hanif S, Uzma S, Ullah MF. Oxidative breakage of cellular DNA by plant polyphenols: a putative mechanism for anticancer properties. Semin Cancer Biol. 2007;17:370–6.

    Article  CAS  PubMed  Google Scholar 

  11. Zubair H, Khan HY, Sohail A, Azim S, Ullah MF, Ahmad A, et al. Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: putative anticancer mechanism of antioxidants. Cell Death Dis. 2013;4:e660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nazeem S, Azmi AS, Hanif S, Kumar KS. Reactive oxygen-dependent dna damage resulting from the oxidation of plumbagin by a copper-redox cycle mechanism: implications for its anticancer properties. Aust-Asian J Cancer. 2008;7:72.

    Google Scholar 

  13. Kela U, Vijayvargiya R. Studies on the mechanism of action of 6-mercaptopurine. Interaction with copper and xanthine oxidase. Biochem J. 1981;193:799–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Foye WO. Role of metal-binding in the biological activities of drugs. J Pharm Sci. 1961;50:93–108.

    Article  CAS  PubMed  Google Scholar 

  15. Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 2008;35:32–46.

    Article  PubMed  Google Scholar 

  16. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, et al. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem. 2003;278:37832–9.

    Article  CAS  PubMed  Google Scholar 

  17. Sastre J, Pallardo FV, Vina J. Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life. 2000;49:427–35.

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Yang X, Dong S, Li X. DNA breakage induced by piceatannol and copper(II): mechanism and anticancer properties. Oncol Lett. 2012;3:1087–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakayama T, Kimura T, Kodama M, Nagata C. Generation of hydrogen peroxide and superoxide anion from active metabolites of naphthylamine and amino azo dyes: its possible role in carcinogenesis. Carcinogenesis. 1983;4:765–9.

    Article  CAS  PubMed  Google Scholar 

  20. Quinlan GJ, Gutteridge JMC. Oxygen radical damage to DNA by rifamycin SV and copper ions. Biochem Pharmacol. 1987;36:3629–33.

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad MK, Amani S, Mahmood R. Potassium romated causes cell lysis and induces oxidative stress in human erythrocytes. Environ Toxicol. 2014;29:138–45.

    Article  CAS  PubMed  Google Scholar 

  22. Pool-Zobel BL, Guigas C, Klein RG, Neudecker CH, Renner HW, Schmezer P. Assessment of genotoxic effects by lindane. Food Chem Toxicol. 1993;31:271–83.

    Article  CAS  PubMed  Google Scholar 

  23. Ramanathan A, Das NP, Tan CH. Effects of Ƴ-linolenic acid, flavonoids and vitamins on cytotoxicity and lipid peroxidation. Free Radic Biol Med. 1994;16:43–8.

    Article  CAS  PubMed  Google Scholar 

  24. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1998;175:184–91.

    Article  Google Scholar 

  25. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35:206–21.

    Article  CAS  PubMed  Google Scholar 

  26. Sarkar B, Roberts EA. The puzzle posed by COMMD1, a newly discovered protein binding Cu(II). Metallomics. 2011;3:20–7.

    Article  CAS  PubMed  Google Scholar 

  27. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000;28:1456–62.

    Article  CAS  PubMed  Google Scholar 

  28. Mansat-de Mas V, Bezombes C, Quillet-Mary A, Bettaieb A, D’orgeix AD, Laurent G, et al. Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol Pharmacol. 1999;56:867–74.

    CAS  PubMed  Google Scholar 

  29. Tsang WP, Chau SP, Kong SK, Fung KP, Kwok TT. Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci. 2003;73:2047–58.

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki S, Higuchi M, Proske RJ, Oridate N, Hong WK, Lotan R. Implication of mitochondria-derived reactive oxygen species, cytochrome c and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. Oncogene. 1999;18:6380–7.

    Article  CAS  PubMed  Google Scholar 

  31. Asumendi A, Morales MC, Alvarez A, Arechaga J, Perez-Yarza G. Implication of mitochondria-derived ROS and cardiolipin peroxidation in N-(4 hydroxyphenyl) retinamide-induced apoptosis. Br J Cancer. 2002;86:1951–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mishra A, Awate R, Namrata S, Mishra N, Soni R, Sharma P. Synthesis and characterization of transition metal (Cu, Co, Fe) complexes of 6-methyl-5-arylhydrazono-2 thio-4-oxo-pyrimidine ligand. Phosphorus Sulfur Silicon Relat Elem. 2009;184:2624–35.

    Article  CAS  Google Scholar 

  33. Prajda N, Morris HP, Weber G. Imbalance of purine metabolism in hepatomas of different growth rates as expressed in behavior of xanthine oxidase (EC 1.2.3.2). Cancer Res. 1976;36:4639–46.

    CAS  PubMed  Google Scholar 

  34. Sau AK, Mondal MS, Mitra S. Interaction of Cu2+ ion with milk xanthine oxidase. Biochim Biophys Acta. 2001;544:89–95.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Council of Scientific and Industrial Research (C.S.I.R.), New Delhi, India, for the award of Senior Research Fellowship to Sayeed Ur Rehman (File no. 09/112(0470)/2011-EMR1). We are also thankful to the Department of Biochemistry, A.M.U. for providing the necessary facilities.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tabish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S.U., Zubair, H., Sarwar, T. et al. Redox cycling of Cu(II) by 6-mercaptopurine leads to ROS generation and DNA breakage: possible mechanism of anticancer activity. Tumor Biol. 36, 1237–1244 (2015). https://doi.org/10.1007/s13277-014-2743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2743-x

Keywords

Navigation