Skip to main content
Log in

Associations between the cytotoxic T lymphocyte antigen 4 polymorphisms and risk of bone sarcomas

  • Research Article
  • Published:
Tumor Biology

Abstract

Cytotoxic T lymphocyte antigen 4 (CTLA-4) genetic polymorphisms are implicated to be associated with susceptibility to bone sarcomas, but published studies have reported inconclusive results. The objective of our study was to conduct a meta-analysis investigating the associations between CTLA-4 gene polymorphisms and risk of bone sarcomas. PubMed and Embase databases were searched for all articles published up to June 2, 2013. Odds ratio (OR) with a 95 % confidence interval (95 % CI) was used to assess the association. Finally, 11 individual studies with a total of 2,951 cases with bone sarcomas and 3,396 controls were included in the meta-analysis. There were four studies on the CTLA-4 49G/A polymorphism, three studies on CTLA-4 318C/T polymorphism, two studies on CTLA-4 1661A/G polymorphism, and two studies on CTLA-4 60A/G polymorphism. Overall, CTLA-4 49G/A polymorphism was obviously associated with risk of bone sarcomas (A vs. G: OR = 1.36, 95 % CI = 1.20–1.54; AA vs. GG: OR = 2.24, 95 % CI = 1.67–2.99; AA vs. AG/GG: OR = 2.00, 95 % CI = 1.53–2.62; AA/GA vs. GG: OR = 1.35, 95 % CI = 1.14–1.61). However, CTLA-4 318C/T, 1661A/G, and 60A/G polymorphisms were not associated with risk of bone sarcomas. The current meta-analysis suggests that CTLA-4 49G/A polymorphism is obviously associated with risk of bone sarcomas. More studies are needed to further evaluate the associations between CTLA-4 polymorphisms and risk of bone sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gaspar N, Di Giannatale A, Geoerger B, Redini F, Corradini N, Enz-Werle N, et al. Bone sarcomas: from biology to targeted therapies. Sarcoma. 2012;2012:301975.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Whelan J, McTiernan A, Cooper N, Wong YK, Francis M, Vernon S, et al. Incidence and survival of malignant bone sarcomas in England 1979–2007. Int J Cancer. 2012;131:E508–17.

    Article  CAS  PubMed  Google Scholar 

  3. ESMO/European Sarcoma Network Working Group. Bone sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23 Suppl 7:vii100–9.

    Google Scholar 

  4. Yarber JL, Agulnik M. Targeted therapies in bone sarcomas: Current approach and future directions. Expert Opin Investig Drugs. 2011;20:973–9.

    Article  CAS  PubMed  Google Scholar 

  5. Grimer R, Athanasou N, Gerrand C, Judson I, Lewis I, Morland B, et al. UK guidelines for the management of bone sarcomas. Sarcoma. 2010;2010:317462.

    PubMed  PubMed Central  Google Scholar 

  6. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ghalamfarsa G, Hadinia A, Yousefi M, Jadidi-Niaragh F. The role of natural killer T cells in B cell malignancies. Tumour Biol. 2013;34:1349–60.

    Article  CAS  PubMed  Google Scholar 

  8. Ramakrishnan R, Gabrilovich DI. Novel mechanism of synergistic effects of conventional chemotherapy and immune therapy of cancer. Cancer Immunol Immunother. 2013;62:405–10.

    Article  CAS  PubMed  Google Scholar 

  9. Deluca DS, Blasczyk R. The immunoinformatics of cancer immunotherapy. Tissue Antigens. 2007;70:265–71.

    Article  CAS  PubMed  Google Scholar 

  10. Ghaderi A. CTLA4 gene variants in autoimmunity and cancer: a comparative review. Iran J Immunol. 2011;8:127–49.

    CAS  PubMed  Google Scholar 

  11. Monjazeb AM, Hsiao HH, Sckisel GD, Murphy WJ. The role of antigen-specific and non-specific immunotherapy in the treatment of cancer. J Immunotoxicol. 2012;9:248–58.

    Article  CAS  PubMed  Google Scholar 

  12. Lens M, Testori A, Ferucci PF. Ipilimumab targeting CD28-CTLA-4 axis: New hope in the treatment of melanoma. Curr Top Med Chem. 2012;12:61–6.

    Article  CAS  PubMed  Google Scholar 

  13. Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: Markers, mechanisms, and manipulation. FASEB J. 2012;26:2253–76.

    Article  CAS  PubMed  Google Scholar 

  14. Tang ST, Tang HQ, Zhang Q, Wang CJ, Wang YM, Peng WJ. Association of cytotoxic T-lymphocyte associated antigen 4 gene polymorphism with type 1 diabetes mellitus: a meta-analysis. Gene. 2012;508:165–87.

    Article  CAS  PubMed  Google Scholar 

  15. Romo-Tena J, Gomez-Martin D, Alcocer-Varela J. CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun Rev. 2013;12:1171-6. .

  16. Sun T, Hu Z, Shen H, Lin D. Genetic polymorphisms in cytotoxic t-lymphocyte antigen 4 and cancer: the dialectical nature of subtle human immune dysregulation. Cancer Res. 2009;69:6011–4.

    Article  CAS  PubMed  Google Scholar 

  17. Li M, Zheng H, Li T, Gao P, Zhang XL, Liu DW. Cytotoxic T-lymphocyte associated antigen-4 gene polymorphisms and primary biliary cirrhosis: a systematic review. J Gastroenterol Hepatol. 2012;27:1159–66.

    Article  PubMed  Google Scholar 

  18. Liu Y, He Z, Feng D, Shi G, Gao R, Wu X, et al. Cytotoxic T-lymphocyte antigen-4 polymorphisms and susceptibility to osteosarcoma. DNA Cell Biol. 2011;30:1051–5.

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Wang J, Song H, Liu J, Song B, Cao X. Cytotoxic T-lymphocyte antigen-4 + 49G/A polymorphism is associated with increased risk of osteosarcoma. Genet Test Mol Biomarkers. 2011;15:503–6.

    Article  CAS  PubMed  Google Scholar 

  20. Yang S, Wang C, Zhou Y, Sun G, Zhu D, Gao S. Cytotoxic T-lymphocyte antigen-4 polymorphisms and susceptibility to Ewing’s sarcoma. Genet Test Mol Biomarkers. 2012;16:1236–40.

    Article  CAS  PubMed  Google Scholar 

  21. Feng D, Yang X, Li S, Liu T, Wu Z, Song Y, et al. Cytotoxic T-lymphocyte antigen-4 genetic variants and risk of Ewing’s sarcoma. Genet Test Mol Biomarkers. 2013;17:458–63.

    Article  CAS  PubMed  Google Scholar 

  22. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  23. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  24. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    CAS  PubMed  Google Scholar 

  25. Yang M, Sun T, Zhou Y, Wang L, Liu L, Zhang X, et al. The functional cytotoxic T lymphocyte-associated protein 4 49G-to-A genetic variant and risk of pancreatic cancer. Cancer. 2012;118:4681–6.

    Article  CAS  PubMed  Google Scholar 

  26. Bharti V, Mohanti BK, Das SN. Functional genetic variants of CTLA-4 and risk of tobacco-related oral carcinoma in high-risk North Indian population. Hum Immunol. 2013;74:348–52.

    Article  CAS  PubMed  Google Scholar 

  27. Gokhale P, Kerkar S, Tongaonkar H, Salvi V, Mania-Pramanik J. CTLA-4 gene polymorphism at position +49 A > G in exon 1: a risk factor for cervical cancer in Indian women. Cancer Genet. 2013;206:154–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixing Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Zhao, X. & Xu, Z. Associations between the cytotoxic T lymphocyte antigen 4 polymorphisms and risk of bone sarcomas. Tumor Biol. 36, 227–231 (2015). https://doi.org/10.1007/s13277-014-2621-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2621-6

Keywords

Navigation