Skip to main content

Advertisement

Log in

Esophageal cancer stem cells express PLGF to increase cancer invasion through MMP9 activation

  • Research Article
  • Published:
Tumor Biology

Abstract

Cancer stem cells (CSCs) are a distinct population in tumors and cause cancer relapse and metastasis. Thus, treating CSCs are believed to be potential to cure rapidly growing and highly metastatic cancers. To date, CSCs in esophageal cancer have not been characterized. In the current study, we detected significant higher levels of placental growth factor (PLGF) and matrix metalloproteinase 9 (MMP9) in the esophageal cancers with metastasis, compared to those without metastasis, in which the expression levels of PLGF and MMP9 strongly correlated with each other. Thus, we used a human esophageal cancer cell line, TE-1, to examine the cross talk of PLGF and MMP9. We found that the levels of PLGF in TE-1 cells positively affected the levels of MMP9, while the levels of MMP9 did not affected the levels of PLGF, suggesting that PLGF may activate MMP9 in esophageal cancer cells. Then, we separated PLGF-positive and PLGF-negative TE-1 cells that had been transfected with a GFP reporter under a PLGF promoter by flow cytometry. We found that PLGF-positive cells grew significantly faster than PLGF-negative cells both in vitro and in vivo in a stereotactical implantation model, suggesting that PLGF-positive cells are likely CSCs in esophageal cancer. Taken together, we demonstrate that PLGF-positive cells appear to be CSCs in esophageal cancer, and they may release PLGF to promote cancer metastasis through MMP9 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Umar SB, Fleischer DE. Esophageal cancer: epidemiology, pathogenesis and prevention. Nat Clin Pract Gastroenterol Hepatol. 2008;5:517–26. doi:10.1038/ncpgasthep1223.

    Article  Google Scholar 

  2. Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol. 2007;17:2–9.

    Article  Google Scholar 

  3. Petersson M, Niemann C. Stem cell dynamics and heterogeneity: implications for epidermal regeneration and skin cancer. Curr Med Chem. 2012;19:5984–92.

    Article  CAS  Google Scholar 

  4. Perez-Losada J, Balmain A. Stem-cell hierarchy in skin cancer. Nat Rev Cancer. 2003;3:434–43.

    Article  CAS  Google Scholar 

  5. Dufour A, Overall CM. Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci. 2013;34:233–42.

    Article  CAS  Google Scholar 

  6. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.

    Article  CAS  Google Scholar 

  7. Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.

    Article  CAS  Google Scholar 

  8. Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.

    Article  CAS  Google Scholar 

  9. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001;7:575–83.

    Article  CAS  Google Scholar 

  10. Eriksson A, Cao R, Pawliuk R, Berg SM, Tsang M, Zhou D, et al. Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell. 2002;1:99–108.

    Article  CAS  Google Scholar 

  11. Davidson B, Reich R, Risberg B, Nesland JM. The biological role and regulation of matrix metalloproteinases (MMP) in cancer. Arkh Patol. 2002;64:47–53.

    CAS  PubMed  Google Scholar 

  12. Rhee JS, Coussens LM. RECKing MMP function: implications for cancer development. Trends Cell Biol. 2002;12:209–11.

    Article  CAS  Google Scholar 

  13. Li B, Tsao SW, Li YY, Wang X, Ling MT, Wong YC, et al. Id-1 promotes tumorigenicity and metastasis of human esophageal cancer cells through activation of PI3K/AKT signaling pathway. Int J Cancer. 2009;125:2576–85.

    Article  CAS  Google Scholar 

  14. Mroczko B, Kozlowski M, Groblewska M, Lukaszewicz M, Niklinski J, Laudanski J, et al. Expression of matrix metalloproteinase-9 in the neoplastic and interstitial inflammatory infiltrate cells in the different histopathological types of esophageal cancer. Folia Histochem Cytobiol. 2008;46:471–8.

    PubMed  Google Scholar 

  15. Kataoka M, Yamagata S, Takagi H, Thant A, Akiyama S, Iida K, et al. Matrix metalloproteinase 2 and 9 in esophageal cancer. Int J Oncol. 1996;8:773–9.

    CAS  PubMed  Google Scholar 

  16. Shima I, Sasaguri Y, Arima N, Yamana H, Fujita H, Morimatsu M, et al. Expression of epidermal growth-factor (EGF), matrix metalloproteinase-9 (mmp-9) and proliferating cell nuclear antigen (pcna) in esophageal cancer. Int J Oncol. 1995;6:833–9.

    CAS  PubMed  Google Scholar 

  17. Hori T, Yamashita Y, Ohira M, Matsumura Y, Muguruma K, Hirakawa K. A novel orthotopic implantation model of human esophageal carcinoma in nude rats: CD44H mediates cancer cell invasion in vitro and in vivo. Int J Cancer. 2001;92:489–96.

    Article  CAS  Google Scholar 

  18. Zhou X, Qi Y. PlGF inhibition impairs metastasis of larynx carcinoma through MMP3 downregulation. Tumour Biol. 2014. doi:https://doi.org/10.1007/s13277-014-2232-2.

    Article  PubMed  Google Scholar 

  19. Zins K, Thomas A, Lucas T, Sioud M, Aharinejad S, Abraham D. Inhibition of stromal PlGF suppresses the growth of prostate cancer xenografts. Int J Mol Sci. 2013;14:17958–71.

    Article  CAS  Google Scholar 

  20. Li B, Wang C, Zhang Y, Zhao XY, Huang B, Wu PF, et al. Elevated PLGF contributes to small-cell lung cancer brain metastasis. Oncogene. 2013;32:2952–62.

    Article  CAS  Google Scholar 

  21. Laurent J, Hull EF, Touvrey C, Kuonen F, Lan Q, Lorusso G, et al. Proangiogenic factor PlGF programs CD11b(+) myelomonocytes in breast cancer during differentiation of their hematopoietic progenitors. Cancer Res. 2011;71:3781–91.

    Article  CAS  Google Scholar 

  22. Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell. 2010;141:178–90.

    Article  Google Scholar 

  23. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, et al. The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene. 1999;18:2883–91.

    Article  CAS  Google Scholar 

  24. Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25:254–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Shanghai Municipal Commission of Health and Family Planning Foundation No. 20134036.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jiang, T., Mao, A. et al. Esophageal cancer stem cells express PLGF to increase cancer invasion through MMP9 activation. Tumor Biol. 35, 12749–12755 (2014). https://doi.org/10.1007/s13277-014-2601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2601-x

Keywords

Navigation