Skip to main content

Advertisement

Log in

Nucleotidyl transferase TUT1 inhibits lipogenesis in osteosarcoma cells through regulation of microRNA-24 and microRNA-29a

  • Research Article
  • Published:
Tumor Biology

Abstract

Osteosarcoma is the most common type of bone cancer. In the present study, by way of PCR-based microarrays, we found that TUT1, a nucleotidyl transferase, was significantly downregulated in osteosarcoma, compared with adjacent normal tissues. In the current study, we performed PCR-based microarrays using the cDNA prepared from osteosarcoma and adjacent normal tissues. The enforced expression of TUT1 was able to inhibit cell proliferation in U2OS and MG63 cells, while its knockdown using small interfering RNA (siRNA) oligos promoted cell proliferation. At the molecular level, we found that TUT1 could inhibit the expression levels of PPARgamma and SREBP-1c, two key regulators in lipogenesis, through upregulation of microRNA-24 and microRNA-29a. Therefore, our results suggest that TUT1 may act as a tumor suppressor for osteosarcoma, which might provide a novel mechanism for the tumor development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40:523–32.

    Article  Google Scholar 

  2. Botter SM, Neri D, Fuchs B. Recent advances in osteosarcoma. Curr Opin Pharmacol. 2014;16C:15–23.

    Article  Google Scholar 

  3. Sun K, Lai EC. Adult-specific functions of animal microRNAs. Nat Rev Genet. 2013;14:535–48.

    Article  CAS  Google Scholar 

  4. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14:475–88.

    Article  CAS  Google Scholar 

  5. Tessitore A, Cicciarelli G, Del VF, Gaggiano A, Verzella D, Fischietti M, et al. MicroRNAs in the DNA damage/repair network and cancer. Int J Genomics. 2014;2014:820248.

    Article  Google Scholar 

  6. Miao J, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biol. 2013;34:2093–8.

    Article  CAS  Google Scholar 

  7. Yang J, Zhang W. New molecular insights into osteosarcoma targeted therapy. Curr Opin Oncol. 2013;25:398–406.

    Article  CAS  Google Scholar 

  8. Zhou G, Shi X, Zhang J, Wu S, Zhao J. MicroRNAs in osteosarcoma: from biological players to clinical contributors, a review. J Int Med Res. 2013;41:1–12.

    Article  CAS  Google Scholar 

  9. Song QC, Shi ZB, Zhang YT, Ji L, Wang KZ, Duan DP, et al. Downregulation of microRNA-26a is associated with metastatic potential and the poor prognosis of osteosarcoma patients. Oncol Rep. 2014;31:1263–70.

    Article  CAS  Google Scholar 

  10. Cai H, Lin L, Cai H, Tang M, Wang Z. Combined microRNA-340 and ROCK1 mRNA profiling predicts tumor progression and prognosis in pediatric osteosarcoma. Int J Mol Sci. 2014;15:560–73.

    Article  Google Scholar 

  11. Knouf EC, Wyman SK, Tewari M. The human TUT1 nucleotidyl transferase as a global regulator of microRNA abundance. PLoS One. 2013;8:e69630.

    Article  CAS  Google Scholar 

  12. Dweep H, Sticht C, Gretz N. In-silico algorithms for the screening of possible microRNA binding sites and their interactions. Curr Genomics. 2013;14:127–36.

    Article  CAS  Google Scholar 

  13. Israel M, Schwartz L. The metabolic advantage of tumor cells. Mol Cancer. 2011;10:70.

    Article  CAS  Google Scholar 

  14. Rochefort H, Chalbos D. The role of sex steroid receptors on lipogenesis in breast and prostate carcinogenesis: a viewpoint. Horm Cancer. 2010;1:63–70.

    Article  CAS  Google Scholar 

  15. Zaidi N, Lupien L, Kuemmerle NB, Kinlaw WB, Swinnen JV, Smans K. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res. 2013;52:585–9.

    Article  CAS  Google Scholar 

  16. Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell. 2013;51:506–18.

    Article  CAS  Google Scholar 

  17. Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485:661–5.

    Article  CAS  Google Scholar 

  18. Li J, Dong L, Wei D, Wang X, Zhang S, Li H. Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int J Biol Sci. 2014;10:171–80.

    Article  CAS  Google Scholar 

  19. Mao JH, Zhou RP, Peng AF, Liu ZL, Huang SH, Long XH, et al. MicroRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett. 2012;4:1125–9.

    Article  CAS  Google Scholar 

  20. Long XH, Mao JH, Peng AF, Zhou Y, Huang SH, Liu ZL. Tumor suppressive microRNA-424 inhibits osteosarcoma cell migration and invasion via targeting fatty acid synthase. Exp Ther Med. 2013;5:1048–52.

    Article  CAS  Google Scholar 

  21. Cheng C, Chen ZQ, Shi XT. MicroRNA-320 inhibits osteosarcoma cells proliferation by directly targeting fatty acid synthase. Tumour Biol. 2014 Jan 5.

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-gao He or Min Ji.

Additional information

De-qiu Zhu and Yue-fen Lou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(DOC 231 kb)

Supplementary Fig. 2

(DOC 218 kb)

Supplementary Fig. 3

(DOC 110 kb)

Supplementary Fig. 4

(DOC 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Dq., Lou, Yf., He, Zg. et al. Nucleotidyl transferase TUT1 inhibits lipogenesis in osteosarcoma cells through regulation of microRNA-24 and microRNA-29a. Tumor Biol. 35, 11829–11835 (2014). https://doi.org/10.1007/s13277-014-2395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2395-x

Keywords

Navigation