Skip to main content

Advertisement

Log in

Epigenetic silencing of methyl-CpG-binding protein 2 gene affects proliferation, invasion, migration, and apoptosis of human osteosarcoma cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Methyl-CpG-binding protein 2 (MeCP2) is a DNA methylation-related gene of the methyl-CpG-binding protein family. Here, we investigated the epigenetic function of the MeCP2 in SaOS2 and U2OS cell lines, and explored the antitumor effects of the gene silencing for osteosarcoma. In this study, chromatin immunoprecipitation assay was used to detect MeCP2 binding activity with TSSC3 gene. RT-PCR and western blot assay were used to analyze the MeCP2 expression in osteosarcoma cell lines after transfection with LV-MECP2-RNAi. Transwell invasion and migration assays were used to detect the cell invasion and migration. The cell apoptosis was examined by using the flow cytometry assay. The tumor size was also assessed to determine the therapeutic effects of gene silencing. The results indicated that MeCP2 indicated the highest combining power with TSSC3 gene. LV-MECP2-RNAi could decrease MeCP2 level in tumor cells compared with the untreated cells (P < 0.05). LV-MECP2-RNAi inhibited the U2OS and SaOS2 cells invasion and migration compared with the control cells (P < 0.05). LV-MECP2-RNAi triggered the U2OS and SaOS2 cell apoptosis, and inhibited the cell proliferation significantly compared with the control cells (P < 0.05). The gene silencing of RNAi could also decreased the tumor size significantly compared with untreated cells (P < 0.05). In conclusion, silencing the MeCP2 gene could block the MeCP2 expression and inhibit the tumor cell migration, invasion, and proliferation, and decreases the tumor size by inducing the apoptosis of the tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang J, Gao K, Lin J, Wang Q. MicroRNA-100 inhibits osteosarcoma cells proliferation by targeting Cyr61. Tumor Biol. 2014;35(2):1095–100.

    Article  CAS  Google Scholar 

  2. Ando K, Heymann MF, Stresing V, Mori K, Redini F, Heymann D. Current therapeutic strategies and novel approaches in osteosarcoma. Cancer (Basel). 2013;5(2):591–616.

    Article  CAS  Google Scholar 

  3. Meyers PA, Gorlick R. Osteosarcoma. Pediatr Clin North Am. 1997;44(4):973–89.

    Article  CAS  Google Scholar 

  4. Miao J, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumor Biol. 2013;34(4):2093–8.

    Article  CAS  Google Scholar 

  5. Stiller CA. International patterns of cancer incidence in adolescents. Cancer Treat Rev. 2007;33(7):631–45.

    Article  Google Scholar 

  6. Coventry MB, Mahlin DC. Osteogenic sarcoma: a critical analysis of 430 cases. J Bone Joint Surg Am. 1957;39(4):741–57.

    Article  Google Scholar 

  7. Kager L, Zoubek A, Potschger U, Kastner U, Flege S, Kempf-Bielack B, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2003;21(10):2011–8.

    Article  Google Scholar 

  8. Jones PA. DNA methylation and cancer. Oncogene. 2002;2:5358–60.

    Article  Google Scholar 

  9. Siedlecki P, Zielenkiewicz P. Mammalian DNA methyltransferases. Acta Biochim Pol. 2006;53(2):245–56.

    Article  CAS  Google Scholar 

  10. Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 2005;97(20):1498–506.

    Article  CAS  Google Scholar 

  11. Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R. Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer. 2013;16(1):23–31.

    Article  Google Scholar 

  12. Yi JM, Dhir M, Guzzetta AA, Lacobuzio-Donahue CA, Heo K, Yang KM, et al. DNA methylation biomarker candidates for early detection of colon cancer. Tumor Biol. 2013;33(2):363–72.

    Article  Google Scholar 

  13. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature. 2011;468(7322):443–6.

    Article  Google Scholar 

  14. Konduri SD, Srivenugopal KS, Yanamadra N, Dinh DH, Olivero WC. Promoter methylation and silencing of the tissue factor pathway inhibitor-2 (TFPI-2), a gene encoding an inhibitor of matrix metalloproteinases in human glioma cells. Oncogene. 2003;22(29):4509–16.

    Article  CAS  Google Scholar 

  15. Murphy DM, Buckley PG, Das S, Watters KM, Bryan K, Stallings RL. Co-localization of the oncogenic transcription factor MYCN and the DNA methyl binding protein MeCP2 at genomic sites in neuroblastoma. PloS One. 6(6):e21436.

  16. Wang X, Shi Q, Xu K, Gao C, Chen C, Li XL, et al. Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells. PLoS One. 2011;6(1):e14602.

    Article  Google Scholar 

  17. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22(3):326–30.

    Article  CAS  Google Scholar 

  18. Squillaro T, Alessio N, Cipollaro M, Renieri A, Giordano A, Galderisi U. Partial silencing of methyl cytosine protein binding 2 (MECP2) in mesenchymal stem cells induces senescence with an increase in damaged DNA. FASEB J. 2010;24(5):1593–603.

    Article  CAS  Google Scholar 

  19. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.

    Article  CAS  Google Scholar 

  20. Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem. 2010;17(20):2141–51.

    Article  Google Scholar 

  21. Prokhortchouk E, Hendrich B. Methyl-CpG binding proteins and cancer: are MeCpGs more important than MBDs? Oncogene. 2002;21(35):5394–9.

    Article  CAS  Google Scholar 

  22. Pontes TB, Chen ES, Gigek CO, Calcagno DQ, Wisnieski F, Leal MF, et al. Reduced mRNA expression levels of MBD2 and MBD3 in gastric carcinogenesis. Tumor Biol. 2014;35(4):3447–53.

    Article  CAS  Google Scholar 

  23. Garinis GA, Patrinos GP, Spanakis NE, Menounos PG. DNA hypermethylation: when tumour suppressor genes go silent. Hum Genet. 2002;111(2):115–27.

    Article  CAS  Google Scholar 

  24. Leoh LS, van Heertum B, De Rijck J, Filippova M, Rios-Colon L, Basu A, et al. The stress oncoprotein LEDGF/p75 interacts with the methyl CpG binding protein MeCP2 and influences its transcriptional activity. Mol Cancer Res. 2012;10(3):378–91.

    Article  CAS  Google Scholar 

  25. Takao T, Asanoma K, Tsunematsu R, Kato K, Wake N. The maternally expressed gene Tssc3 regulates the expression of MASH2 transcription factor in mouse trophoblast stem cells through the AKT-Sp1 signaling pathway. J Biol Chem. 2012;287(51):42685–94.

    Article  CAS  Google Scholar 

  26. Sanchez-Carbayo M. Hypermethylation in bladder cancer: biological pathways and translational applications. Tumor Biol. 2012;33(2):347–61.

    Article  CAS  Google Scholar 

  27. Peddada S, Yasui DH, LaSalle JM. Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome. Hum Mol Genet. 2006;15(12):2003–14.

    Article  CAS  Google Scholar 

  28. Darwanto A, Kitazawa R, Maeda S, Kitazawa S. MeCP2 and promoter methylation cooperatively regulate E-cadherin gene expression in colorectal carcinoma. Cancer Sci. 2003;94(5):442–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Natural Science Foundation of China (No. 81001198 and 81372864).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-Nan Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, G., Lv, Y., Dai, H. et al. Epigenetic silencing of methyl-CpG-binding protein 2 gene affects proliferation, invasion, migration, and apoptosis of human osteosarcoma cells. Tumor Biol. 35, 11819–11827 (2014). https://doi.org/10.1007/s13277-014-2336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2336-8

Keywords

Navigation