Skip to main content

Advertisement

Log in

Depression of testes-specific protease 50 (TSP50) inhibits cell proliferation and induces apoptosis in laryngocarcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Testes-specific protease 50 (TSP50) is a potential cancer-associated gene that may be involved in human laryngocarcinoma. The present study aimed to investigate suppressive effects on the HEp2 human laryngocarcinoma cell line by transfection with TSP50-specific short hairpin RNA (shRNA). Western blot analysis was used to detect the expression levels of TSP50. MTT assay was used to evaluate cell proliferation. Wound healing was used in cell migration and invasion assays to evaluate the cell exercise capacity. Nuclear staining assay was used to evaluate cell apoptosis after knockdown of TSP50. Expression levels of TSP50 protein in the shRNA group were downregulated successfully by transfection, and the knockdown of endogenous TSP50 in HEp2 cells greatly inhibited nuclear factor κB (NF-κB) activity. MTT results showed that the cell proliferation in the shRNA group was significantly more depressed than that in the blank (P < 0.05) and negative control groups (P < 0.05). Additionally, a decreased number of migrated cells in the shRNA group was observed (P < 0.05) using a cell migration and invasion assay. Moreover, knockdown of endogenous TSP50 expression can induce apoptosis in HEp2 Cells. These data indicated that knockdown of TSP50 may cause inhibition of proliferation, migration, and invasion of HEp2 cells. This study provides a new perspective in understanding the molecular mechanisms underlying the progression of laryngocarcinoma and offers a potential therapeutic target for laryngocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics. CA Cancer J Clin. 1997;47:5–27.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  3. Yuan L, Shan J, De Risi D, Broome J, Lovecchio J, Gal D, et al. Isolation of a novel gene, TSP50, by a hypomethylated DNA fragment in human breast cancer. Cancer Res. 1999;59:3215–21.

    CAS  PubMed  Google Scholar 

  4. Shan J, Yuan L, Xiao Q, Chiorazzi N, Budman D, Teichberg S, et al. TSP50, a possible protease in human testes, is activated in breast cancer epithelial cells. Cancer Res. 2002;62:290–4.

    CAS  PubMed  Google Scholar 

  5. Song ZB, Bao YL, Zhang Y, Mi XG, Wu P, Wu Y, et al. Testes-specific protease 50 (TSP50) promotes cell proliferation through the activation of the NF-kappa beta (NF-kappaB) signaling pathway. Biochem J. 2011;436:457–67.

    Article  CAS  PubMed  Google Scholar 

  6. Li YY, Bao YL, Song ZB, Sun LG, Wu P, Zhang Y, et al. The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation. PLoS One. 2012;7:e35030.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Xu H, Shan J, Jurukovski V, Yuan L, Li J, Tian K. TSP50 encodes a testis specific protease and is negatively regulated by p53. Cancer Res. 2007;67:1239–45.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou L, Bao YL, Zhang Y, Wu Y, Yu CL, Huang YX, et al. Knockdown of TSP50 inhibits cell proliferation and induces apoptosis in P19 cells. IUBMB Life. 2010;62:825–32.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng L, Xie G, Duan G, Yan X, Li Q. High expression of testes-specific protease 50 is associated with poor prognosis in colorectal carcinoma. PLoS One. 2011;6:e22203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zhang Y, Zhou L, Bao YL, Wu Y, Yu CL, Huang YX, et al. Butyrate induces cell apoptosis through activation of JNK MAP kinase pathway in human colon cancer RKO cells. Chem Biol Interact. 2010;185:174–81.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Bao YL, Yang MT, Wu Y, Yu CL, Huang YX, et al. Activin A induces SLC5A8 expression through the Smad3 signaling pathway in human colon cancer RKO cells. Int J Biochem Cell Biol. 2010;42:1964–72.

    Article  CAS  PubMed  Google Scholar 

  12. Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009;41:365–70.

    Article  CAS  PubMed  Google Scholar 

  13. Doerfler W, Hohlweg U, Müller K, Remus R, Heller H, Hertz J. Foreign DNA integration—perturbations of the genome—oncogenesis. Ann N Y Acad Sci. 2001;945:276–88.

    Article  CAS  PubMed  Google Scholar 

  14. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–3.

    Article  CAS  PubMed  Google Scholar 

  15. DiDonato J, Mercurio F, Rosette C, Wu-Li J, Suyang H, Ghosh S, et al. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol. 1996;16:1295–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Lallena MJ, Diaz-Meco MT, Bren G, Payá CV, Moscat J. Activation of IκB kinase β by protein kinase C isoforms. Mol Cell Biol. 1999;19:2180–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Sgambato A, Cittadini A, Faraglia B, Weinstein IB. Multiple functions of p27 (Kip1) and its alterations in tumor cells: a review. J Cell Physiol. 2000;183:18–27.

    Article  CAS  PubMed  Google Scholar 

  18. Kothapalli D, Zhao L, Hawthorne EA, Cheng Y, Lee E, Puré E, et al. Hyaluronan and CD44 antagonize mitogen-dependent cyclin D1 expression in mesenchymal cells. J Cell Biol. 2007;176:535–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Aggarwal BB. Nuclear factor-κB: the enemy within. Cancer Cell. 2004;6:203–8.

    Article  CAS  PubMed  Google Scholar 

  20. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet Jr RJ, Sledge Jr GW. Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Biol. 1997;17:3629–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Rayet B, Gélinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene. 1999;18:6938–47.

    Article  CAS  PubMed  Google Scholar 

  22. Lee RJ, Albanese C, Fu M, D’Amico M, Lin B, Watanabe G, et al. Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol. 2000;20:672–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Depression of testes-specific protease 50 (TSP50) inhibits cell proliferation and induces apoptosis in laryngocarcinoma. Tumor Biol. 35, 10781–10788 (2014). https://doi.org/10.1007/s13277-014-2090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2090-y

Keywords

Navigation