Skip to main content
Log in

Silver nanoparticles induce apoptotic cell death in cultured cerebral cortical neurons

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Silver nanoparticles (SNPs) have been widely produced and exploited in diverse products, primarily because of their antimicrobial properties. The present study investigated the induction of apoptotic cell death and oxidative stress in cultured cortical neurons in response to SNP exposure. In order to assess the toxicity of SNPs, the cultured cortical neurons were exposed to 0.4, 2, and 10 μg/mL of SNPs for 6, 12, and 24 h. Lactate dehydrogenase released from damaged cells was quantified and the levels of intracellular reactive oxygen species (ROS) were measured using 2′-7′-dichlorofluorescin diacetate. Apoptosis induced by SNPs was analyzed using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), a DNA ladder assay and Western blot analysis. SNPs inhibited the viability of cerebral cortical neurons in a dose- and time-dependent manner. Levels of ROS increased significantly at 12 and 24 h after treatment. TUNEL showed that compared with controls, numerous apoptotic cells appeared in the treated cultures at 12 and 24 h after treatment. DNA fragmentation in SNP-exposed cells suggested apoptosis. Western blot analysis demonstrated that cleaved caspase-3 protein expression increased significantly in a time-dependent manner. These results suggest that SNPs cause cytotoxicity and neuronal apoptosis through increasing intracellular ROS production in cultured cortical neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braydich-Stolle, L., Hussain, S., Schlager, J. J. & Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kim, J. S. et al. Bioavailability of iron-nanoparticles with ascorbic acid in anemic mice. J Biomed Res 13: 53–63 (2012).

    Article  Google Scholar 

  3. Crosera, M. et al. Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health 82:1043–1055 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, Y. M. et al. Effect of iron-nanoparticles and ironmicroparticles on erythropoiesis and iron-storage in iron-deficiency anemic mice. J Biomed Res 13:119–132 (2012).

    Article  CAS  Google Scholar 

  5. Sintubin, L., Verstraete, W. & Boon, N. Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109:2422–2236 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, Y. S. et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Sung, J. H. et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–461 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Rungby, J. & Danscher, G. Localization of exogenous silver in brain and spinal cord of silver exposed rats. Acta Neuropathol 60:92–98 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Panyala, N. R., Pena-Mendez, E. M. & Havel, J. Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129 (2008).

    CAS  Google Scholar 

  10. Johnston, H. J. et al. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Arora, S., Jain, J., Rajwade, J. M. & Paknikar, K. M. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett 179:93–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Arora, S., Jain, J., Rajwade, J. M. & Paknikar, K. M. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. AshaRani, P. V., Low Kah Mun, G., Hande, M. P. & Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Tang, J. et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9:4924–4932 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Sharma, H. S., Hussain, S., Schlager, J., Ali, S. F. & Sharma, A. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl 106:359–364 (2010).

    Article  Google Scholar 

  16. Reynolds, A., Laurie, C., Mosley, R. L. & Gendelman, H. E. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 82:297–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Hussain, S. M. et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Carlson, C. et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619 (2008).

    CAS  PubMed  Google Scholar 

  19. Kim, S. et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076–1084 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Choi, J. E. et al. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Yu, W. J. et al. Effects of silver nanoparticles on pregnant dams and embryo-fetal development in rats. Nanotoxicology doi:10.3109/17435390.2013.857734 (2013).

    Google Scholar 

  22. Brooking, J., Davis, S. S. & Illum, L. Transport of nanoparticles across the rat nasal mucosa. J Drug Target 9:267–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Hussain, S. M. et al. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92:456–463 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Z., Ren, G., Zhang, T. & Yang, Z. Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles. Toxicology 264:179–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Soto, K., Garza, K. M. & Murr, L. E. Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3:351–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ray, S. K. et al. Cell death in spinal cord injury (SCI) requires de novo protein synthesis. Calpain inhibitor E-64-d provides neuroprotection in SCI lesion and penumbra. Ann N Y Acad Sci 939:436–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Rahman, M. F. et al. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187:15–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, X. & Schluesener, H. J. Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Piao, M. J. et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondriainvolved apoptosis. Toxicol Lett 201:92–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Nel, A., Xia, T., Mädler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311:622–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Yon, J. M. et al. Teratogenic effects of nano-and micro-sized particles of zinc oxide during mouse organogenesis. J Biomed Res 12:103–112 (2011).

    Google Scholar 

  33. Ahamed, M. et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Cha, K. et al. Comparison of acute responses of mice livers to short-term exposure to nano-sized or microsized silver particles. Biotechnol Lett 30:1893–1899 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Hsin, Y. H. et al. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Kimura, N. et al. Astroglial responses against Abeta initially occur in cerebral primary cortical cultures: species differences between rat and cynomolgus monkey. Neurosci Res 49:339–346 (2004).

    Article  PubMed  Google Scholar 

  37. Kim, M. et al. Developmental levels of phospholipase D isozymes in the brain of developing rats. Acta Histochem 112:81–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y. et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273:2161–2168 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Choon Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Ko, JW., Koh, SK. et al. Silver nanoparticles induce apoptotic cell death in cultured cerebral cortical neurons. Mol. Cell. Toxicol. 10, 173–179 (2014). https://doi.org/10.1007/s13273-014-0019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-014-0019-6

Keywords

Navigation