Skip to main content
Log in

On the history and prospects of three-dimensional human–computer interfaces for the provision of air traffic control services

  • Review Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This paper is an essay on the history and prospects of three-dimensional (3D) human–computer interfaces for the provision of air traffic control services. Over the past 25 years, many empirical studies have addressed this topic. However, the results have been deemed incoherent and self-contradictory and no common conclusion has been reached. To escape from the deadlock of the experimental approach, this study takes a step back into the conceptual development of 3D interfaces, addressing the fundamental benefits and drawbacks of 3D rendering. Under this light, many results in the literature start to make sense and some conclusions can be drawn. Also, with an emphasis on the future of air traffic control, this research identifies a set of tasks wherein the intrinsic weaknesses of 3D rendering can be minimized and its advantages can be exploited. These are the ones that do not require accurate estimates of distances or angles. For future developments in the field of 3D interfaces for air traffic control operators, we suggest focusing on those tasks only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Challenges of Air Transport 2030 Survey of experts’ views. EUROCONTROL, Brétigny-sur-Orge, France (2009)

  2. EUROCONTROL: System Wide Information Management. https://www.eurocontrol.int/swim

  3. SESAR JU: SWIM Concept of Operations. https://www.eurocontrol.int/sites/default/files/publication/files/del08.01.01-d41-swim_conops.pdf

  4. FAA: System Wide Information Management. http://www.faa.gov/nextgen/programs/swim/

  5. Azuma, R., Daily, M., Krozel, J.: Advanced human-computer interfaces for air traffic management and simulation. In: Proceedings of Flight Simulation Technologies Conference 1996. American Institute of Aeronautics and Astronautics, San Diego, CA (1996)

  6. EUROCONTROL: 4D Trajectory Management: An Initial Pilot Perspective, http://www.eurocontrol.int/eec/public/standard_page/proj_CARE_INO.html

  7. Nordwall, B.D.: Free Flight: ATC Model for the Next 50 Years, Aviat. Week Space Technol. 143 (5), 38–39 (1995)

  8. Sheridan, T.B.: Humans and Automation: System Design and Research Issues. Wiley, New York (2004)

    Google Scholar 

  9. Bagassi, S., De Crescenzio, F., Persiani, F.: Design and Development of an ATC Distributed Training System. In: Proceedings of the 26th International Congress of the Aeronautical Sciences including the 8th AIAA 2008 ATIO Conference. Optimage, Anchorage, AL (2008)

  10. Tavanti, M.: On the Relative Utility of 3D Interfaces. Acta Universitatis Upsaliensis, Uppsala (2004)

    Google Scholar 

  11. Hornof, A.J., Halverson, T.: Cognitive Strategies and Eye Movements for Searching Hierarchical Computer Displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 249–256. ACM, Ft. Lauderdale, FL (2003)

  12. Ware, C.: Information Visualization: Perception for Design. Elsevier Science, San Francisco, CA (2004)

    Google Scholar 

  13. Tory, M., Moller, T.: Human factors in visualization research. Vis. Comput. Graph. IEEE Trans. 10, 72–84 (2004)

    Article  Google Scholar 

  14. Kosara, R., Hauser, H., Gresh, D.L.: An interaction view on information visualization. In: Proceedings of EUROGRAPHICS 2003. pp. 123–137. Eurographics, Granada, Spain (2003)

  15. Brown, M.A., Slater, M.: Some experiences with three-dimensional display design: an air traffic control visualisation. In: Proceedings of the 6th IEEE International Workshop on Robot and Human Communication. RO-MAN’97. pp. 296–301. Sendai, Japan (1997)

  16. Esgate, A., Baker, K., Groome, D.: An Introduction to Applied Cognitive Psychology. Psychology Press, Hove, New York (2005)

    Google Scholar 

  17. Harper, R.H.R., Hughes, J.A.: “What a f-ing system! Send’em all to the same place and then expect us to stop’em hitting”: Making Technology Work in Air Traffic Control. In: Button, G. (ed.) Technology in Working Order: Studies of Work, Interaction, and Technology, pp. 127–144. Routledge, London (1993)

    Google Scholar 

  18. Bainbridge, L.: Analysis of verbal protocols from a process control task. In: Edwards, E., Lees, F.P. (eds.) The Human Operator in Process Control, pp. 146–158. Taylor & Francis, London (1974)

    Google Scholar 

  19. Rasmussen, J., Jensen, A.: Mental procedures in real-life tasks: a case study of electronic trouble shooting. Ergonomics 17, 293–307 (1974)

    Article  Google Scholar 

  20. Jeannot, E., Kelly, C., Thompson, D.: The Development of Situation Awareness Measures in ATM Systems. EUROCONTROL, Brussels (2003)

    Google Scholar 

  21. Bisseret, A.: Analysis of mental processes involved in air traffic control. Ergonomics 14, 565–570 (1971)

    Article  Google Scholar 

  22. Whitfield, D., Jackson, A.: The Air Traffic Controller’s “Picture” as an example of a Mental Model. In: Analysis, Design and Evaluation of Man–Machine Systems: Proceedings of the IFAC/IFIP/IFORS/IEA Conference. Pergamon Press, Baden-Baden, Federal Republic of Germany (1983)

  23. Bisseret, A.: Représentation et Décision Experte: Psychologie Cognitive de la Décision chez les Aiguilleurs du ciel. Octares Editions, Toulouse (1995)

    Google Scholar 

  24. Ochanine, D.: Rôle de l´image opérative dans la saisie du contenu informationnel des signaux. Questions de psychologie. Quest. Psychol. 4, 209–224 (1969)

    Google Scholar 

  25. Ochanine, D.: L’image Opérative: Actes d’un Seminaire (1–5 juin 1981) et Recueil d’Articles de D. Ochanine. Universite de Paris I (Pantheon-Sorbonne), Centre d’Education Permanente, Department d’Ergonomie et d’Ecologie Humaine, Paris (1981)

  26. Gronlund, S.D., Daryl, O.D., Dougherty, M.R.P., Perry, J.L., Manning, C.A.: Aircraft Importance and its Relevance to Situation Awareness Federal Aviation Administration. FAA Civil Aeromedical Institute, Oklahoma City (1998)

    Google Scholar 

  27. Tavanti, M., Cooper, M.: Looking for the 3D Picture: The Spatio-temporal Realm of Student Controllers. In: First International Conference, HCD 2009, Held as Part of HCI International 2009, Proceedings. pp. 1070–1079. Springer, San Diego, CA (2009)

  28. Strutt, G.G.: The Human computer interface in air traffic control: feasibilty study for a three dimensional radar picture. MSc dissertation, Middlesex University (1991)

  29. Burnett, M.S.: An analysis of the effects of multiple colors, information density, and traffic complexity on plan view and perspective air traffic control radar displays. MSc dissertation, Washington State University (1991)

  30. Wickens, C.D., Todd, S., Seidler, K.: Three-Dimensional Displays: Perception, Implementation and Applications. University of Dayton, Research Institute, Dayton, OH (1989)

  31. Rozzi, S., Boccalatte, A., Amaldi, P., Fields, B., Loomes, M., Wong, W.: D1.1: Innovation and Consolidation Report Version 0.4. EUROCONTROL, 3D-in-2D Display Project, Bretigny (2007)

  32. St. John, M., Cowen, M.B., Smallman, H.S., Oonk, H.M.: The use of 2D and 3D displays for shape-understanding versus relative-position tasks. Hum. Factors 43, 79–98 (2001)

    Article  Google Scholar 

  33. Smallman, H.S., St. John, M.: Naive realism: misplaced faith in realistic displays. Ergon. Des. Q. Hum. Factors Appl. 13, 6–13 (2005)

    Article  Google Scholar 

  34. Andre, A.D., Wickens, C.D.: When users want what’s not best for them. Ergon. Des. Q. Hum. Factors Appl. 3, 10–14 (1995)

    Article  Google Scholar 

  35. Wickens, C.D., Todd, S., Seidler, K.: Terrain Representation for Air Traffic Control: A Comparison of Perspective with Plan View Displays. University of Illinois, Aviation Research Laboratory, Savoy, IL (1994)

  36. Tham, M., Wickens, C.D.: Evaluation of Perspective and Stereoscopic Displays as Alternatives to Plan View Displays in Air Traffic Central. University of Illinois, Aviation Research Laboratory, Savoy, IL (1993)

  37. Haskell, I.D., Wickens, C.D.: Two- and three-dimensional displays for aviation: a theoretical and empirical comparison. Int. J. Aviat. Psychol. 3, 87–109 (1993)

    Article  Google Scholar 

  38. Wickens, C.D., Campbell, M., Liang, C.-C., Merwin, D.H.: Weather Displays for Air Traffic Control: The Effect of 3D Perspective. University of Illinois, Aviation Research Laboratory, Savoy, IL (1995)

  39. Wickens, C.D.: Display Integration of Air Traffic Control Information: 3D Displays and Proximity Compatibility. University of Illinois, Aviation Research Laboratory, Savoy, IL (1995)

  40. Naikar, N.: Perspective Displays: A review of Human Factors Issues. Department of Defence, Defence Science and Technology Organisation, Australia (1998)

    Google Scholar 

  41. Wickens, C.D., Banks, R.: Commanders’ Display of Terrain Information: Manipulations of Display Dimensionality and Frame of Reference to Support Battlefield Visualization. Army Research Laboratory, Aberdeen Proving Ground, MD (1999)

  42. Smallman, H.S., St. John, M., Oonk, H.M., Cowen, M.B.: Information availability in 2D and 3D displays. Comput. Graph. Appl. IEEE. 21, 51–57 (2001)

    Article  Google Scholar 

  43. Lind, M., Bingham, G.P., Forsell, C.: Metric 3D structure in visualizations. Inf. Vis. 2, 51–57 (2003)

    Article  Google Scholar 

  44. Perrone, J.A.: Visual slant underestimation: a general model. Perception. 11, 641–654 (1982)

    Article  Google Scholar 

  45. Boyer, B.S., Wickens, C.D.: 3D Weather Displays for Aircraft Cockpits. University ofIllinois, Aviation Research Laboratory, Savoy, IL (1994)

  46. Sedgwick, H.A.: Space Perception. In: Boff, K.R., Kaufman, L., Thomas, J.P. (eds.) Handbook of Perception and Human Performance, pp. 21.1–21.57. Wiley, New York (1986)

    Google Scholar 

  47. Zhang, Q.: Theoretical review on a 3D based air traffic control system. http://goo.gl/LVNvBB (2012)

  48. Stokes, A., Wickens, C.D., Kite, K.: Display Technology: Human Factors Concepts. Society of Automotive Engineers, Warrendale (1990)

    Google Scholar 

  49. Westrum, R.: Automation, Information and Consciousness in Air Traffic Control. In: Wise, J., Hopkin, V.D., Smith, M. (eds.) Automation and Systems Issues in Air Traffic Control, pp. 367–380. Springer, Berlin, Heidelberg (1991)

    Chapter  Google Scholar 

  50. Le-Hong, H.: 3D Visualization In Air Traffic Control. In: Actes de la Première Conférence Internationale RIVF’03. pp. 65–70. Editions Suger, Hanoi, Vietnam (2003)

  51. Hart, S.G., Loomis, L.L.: Evaluation of the potential format and content of a cockpit display of traffic information. Hum. Factors J. Hum. Factors Ergon. Soc. 22, 591–604 (1980)

    Google Scholar 

  52. Kaiser, M.K., Proffitt, D.R.: Using the stereokinetic effect to convey depth: computationally efficient depth-from-motion displays. Hum. Factors J. Hum. Factors Ergon. Soc. 34, 571–581 (1992)

    Google Scholar 

  53. Narborough-Hall, C.S.: Recommendations for applying colour coding to air traffic control displays. Displays 6, 131–137 (1985)

    Article  Google Scholar 

  54. Whitfield, D.: A preliminary study of the air traffic controller’s “picture”. J. Can. Air Traffic Controll. Assoc. 11, 19–28 (1979)

    Google Scholar 

  55. Mogford, R.H., Murphy, E.D., Roske-Hofstrand, R.J., Yastrop, G., Guttman, J.A.: Research Techniques for Documenting Cognitive Processes in Air Traffic Control: Sector Complexity and Decision Making. Federal Aviation Administration Technical Center, Atlantic City International Airport (1994)

  56. Cooper, M., Fridlund, A., Andel, M., Bojan, C., Hardy, J.-L.: Educational Benefits of 3D Displays in Early Controller Training. In: Proceedings of the 27th International Congress of the Aeronautical Sciences including the 8th AIAA 2008 ATIO Conference. Optimage, Nice, France (2010)

  57. Shorrock, S.T.: Errors of perception in air traffic control. Saf. Sci. 45, 890–904 (2007)

    Article  Google Scholar 

  58. Vygotsky, L.: Mind and Society. Harvard University Press, Cambridge (1930)

    Google Scholar 

  59. Dang, N.-T.: A Stereoscopic 3D Visualization Environment for Air Traffic Control: An Analysis of Interaction and a Proposal of New Interaction Techniques (2005)

  60. Lange, M., Dang, T., Cooper, M.: Interactive Resolution of Conflicts in a 3D Stereoscopic Environment for Air Traffic Control. In: Proceedings of the 4th International Conference on Computer Sciences: Research, Innovation and Vision for the Future. pp. 32–39. IEEE, Ho Chi Minh City, Vietnam (2006)

  61. EUROCONTROL: 3D-in-2D Planar View Display. http://www.eurocontrol.int/eec/public/standard_page/proj_CARE_INO_III_3D_2D.html

  62. Jones, D.G.: Subjective Measures of Situation Awareness. In: Endsley, M.R., Garland, D.J. (eds.) Situation Awareness Analysis and Measurement, pp. 101–114. Lawrence Erlbaum Associates, Mahwah (2000)

    Google Scholar 

  63. Polson, P.G., Lewis, C., Rieman, J., Wharton, C.: Cognitive walkthroughs: a method for theory-based evaluation of user interfaces. Int. J. Man-Mach. Stud. 36, 741–773 (1992)

    Article  Google Scholar 

  64. Burnett, M.S., Barfield, W.: Perspective versus Plan View Air Traffic Control Displays: Survey and Empirical Results. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting. pp. 87–91. Sage, San Francisco, CA (1991)

  65. Wickens, C.D., Miller, S., Tham, M.: The Implications of Datalink for Representing Pilot Request Information on 2D and 3D Air Traffic Control Displays. University of Illinois, Aviation Research Laboratory, Savoy, IL (1994)

  66. Smith, P., Whetton, C.: GAT: General Ability Tests. ASE, A Division of NFER-NELSON, Windsor, UK (1988)

    Google Scholar 

  67. Orden, K.F.V., Broyles, J.W.: Visuospatial task performance as a function of two- and three-dimensional display presentation techniques. Displays 21, 17–24 (2000)

    Article  Google Scholar 

  68. Persiani, F., Liverani, A.: A Semi-Immersive Synthetic Environment for Cooperative Air Traffic Control. In: Proceedings of the 22nd Congress of International Council of the Aeronautical Sciences. Optimage, Harrogate, UK (2000)

  69. Bagassi, S., Crescenzio, F.D., Persiani, F.: Design and evaluation of a four-dimensional interface for air traffic control. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 224, 937–947 (2010)

    Article  Google Scholar 

  70. John, M., Smallman, H.S., Bank, T.E., Cowen, M.B.: Tactical routing using two-dimensional and three-dimensional views of terrain. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 45, 1409–1413 (2001)

    Article  Google Scholar 

  71. Tavanti, M., Hong-Ha, L., Nguyen-Thong, D.: Three-Dimensional Stereoscopic Visualization for Air Traffic Control Interfaces: A Preliminary Study. In: The 22nd Digital Avionics Systems Conference: Proceedings. pp. 5.A.1–5.1–5.A.17., Indianapolis, IN (2003)

  72. Cooper, M., Cooper, M., Duong, V., Hjalmarsson, J., Lange, M., Ynnerman, A.: Interactive and Immersive 3D Visualization for ATC. Presented at the 6th USA/Europe ATM 2005 R&D Seminar, Baltimore, MD (2005)

  73. Lange, M., Cooper, M., Duong, V., Ynnerman, M.: 3D VR Air Traffic Management Project. EUROCONTROL Experimental Center, Brétigny-sur-Orge, France (2004)

  74. Sternberg, R.J.: Cognitive Psychology. Harcourt Brace College Publishers, Fort Worth (1996)

    Google Scholar 

  75. Abadir, G., Karlsson, D., Molander, F., Schylström, M., Tjusberg, H., Vegelius, K.: The Future of Air Traffic Control? Digitalizing the mental image. Unpublished. (2010)

  76. Somervell, J.: Role of awareness of cognitive style in hypermedia. Int. J. Educ. Technol. 1 (1999)

  77. Rensink, R.A.: Internal vs. External Information in Visual Perception. In: Proceedings of the 2nd International Symposium on Smart Graphics. pp. 63–70. ACM, Hawthorne, NY (2002)

  78. Willaam Wong, B.L., Rozzi, S., Boccalatte, A., Gaukrodger, S., Amaldi, P., Fields, B., Loomes, M.J., Martin, P.: 3D-in-2D Displays for ATC, https://www.eurocontrol.int/eec/gallery/content/public/documents/projects/CARE/CARE_INO_III/3D-2D_Report_Year1.pdf

  79. Boccalatte, A., Wong, W.: D1.3: Architecture and Common Simulation Engine Version 0.2. EUROCONTROL, 3D-in-2D Display Project, Bretigny (2007)

  80. NASA: NASA Technology Readiness Level, http://www.nasa.gov/content/technology-readiness-level/#.VMZDucZ95rM

  81. NEXT Ingegneria dei Sistemi SpA: AD4: 4D Virtual Airspace Management System. European Commission (2007)

  82. Rozzi, S., Boccalatte, A., Amaldi, P., Fields, B., Loomes, M., Wong, W.: D1.2: Innovative Concepts and Their Design Rationale. EUROCONTROL, 3D-in-2D Display Project, Bretigny (2007)

  83. Wong, W., Gaukrodger, S., Han, F.: D2.2: Year 1 Prototypes Evaluation. EUROCONTROL, 3D-in-2D Display Project, Bretigny (2008)

  84. Wong, W., Gaukrodger, S., Han, F.: Year 1 Prototypes Evaluation (Lot No. 1, WP 2). EUROCONTROL, Bretigny (2008)

  85. Rozzi, S., Wong, W., Woodward, P., Amaldi, P., Fields, B., Panizzi, E., Malizia, A., Boccalatte, A., Monteleone, A., Mazzuchelli, L.: Developing visualisations to support spatial-temporal reasoning in ATC. In: Proceedings of the 2nd International Conference on Research in Air Transportation, Belgrade, Serbia and Montenegro (2006)

  86. Wickens, C.D., Vincow, M., Yeh, M.: Applications of Visual Spatial Thinking: The Importance of Frame Reference. In: Shah, P., Miyake, A. (eds.) The Cambridge Handbook of Visual Spatial Thinking, pp. 383–425. Cambridge University Press, Cambridge (2005)

    Chapter  Google Scholar 

  87. Wickens, C.D., Andre, A.D.: Proximity compatibility and information display: effects of color, space, and objectness on information integration. Hum. Factors J. Hum. Factors Ergon. Soc. 32, 61–77 (1990)

    Article  Google Scholar 

  88. Wickens, C.D., Carswell, C.M.: The proximity compatibility principle: its psychological foundation and relevance to display design. Hum. Factors J. Hum. Factors Ergon. Soc. 37, 473–494 (1995)

    Article  Google Scholar 

  89. Skybrary: Minimum Vectoring Altitude (MVA), http://www.skybrary.aero/index.php/Minimum_Vectoring_Altitude_(MVA)

  90. Akselsson, R., Källqvist, C., Bednarek, V., Cepciansky, M., Trollas, A., Davies, R., Eriksson, J., Olsson, R., Johansson, G.: Virtual Reality in Air Traffic Control. In: Proceedings of the IEA 2000/HFES 2000 Congress. pp. 6-273–6-275. San Diego, USA (2000)

  91. ICAO ed: Continous Climb Operations (CCO) Manual Doc 9993, (2013)

  92. Skybrary: 4D Trajectory Concept, http://www.skybrary.aero/index.php/4D_Trajectory_Concept

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Masotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masotti, N., Persiani, F. On the history and prospects of three-dimensional human–computer interfaces for the provision of air traffic control services. CEAS Aeronaut J 7, 149–166 (2016). https://doi.org/10.1007/s13272-016-0185-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-016-0185-4

Keywords

Navigation