Skip to main content
Log in

Aerodynamic power and mechanical efficiency of bat airframes using a quasi-steady model

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Previous bat aerodynamic power models are refined by (1) varying the value of wing profile drag with lift coefficient, which varies with both flight speed and Reynolds number, (2) allowing for the aerodynamic cleanliness of head, body, ears and tail in calculating parasitic drag values at various speeds and according to airframe type, (3) incorporating models of wingbeat amplitude and frequency in the power calculations, and, (4) upgrading the allometric, phylogenetically corrected relationship between basal metabolic rate and body mass using data from 98 bat species. The fidelity of the aerodynamic power model is assessed using published wind tunnel data on a bat in steady glide. By comparing empirical published metabolic power (P met) values with values derived using the new aerodynamic model, we update estimates of in-flight musculoskeletal mechanical efficiency (η) for the airframes of eight bat species at steady level flight speeds. Furthermore, we calculate the increase in η at high speeds. The bats assessed range in body mass from 0.01 to 1 kg, and the comparison covers the speed range normally used by free-flying bats during their excursions. At their best endurance flight speeds (V end), η = 1.52 Ln (m bat) + 11.44 (%). At speeds > V end, η = η@ Vend + 1.3 (VV end) (%). These equations yield accurate P met estimates for flight speeds within the range used for the steady level flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AR :

Aspect ratio

B :

Span (m)

C D :

Three-dimensional lifting surface drag coefficient = 2 D/ρ/S ref/V 2

C d :

Two-dimensional airfoil section drag coefficient

C L :

Three-dimensional lifting surface lift coefficient = 2 L/ρ/S ref/V 2

C l :

Two-dimensional airfoil lift coefficient

D :

Drag (N)

f w :

Wingbeat frequency (Hz)

g :

Acceleration due to gravity = 9.81 m s−2

L :

Lift (N)

m :

Bat mass (kg)

P :

Power (W)

q :

Dynamic pressure = ½ ρV 2 (N m−2)

Re :

Reynolds number

R :

Pearson’s correlation coefficient

S :

Area of a lift or drag generating surface of body (m2)

T :

Time (s)

t :

Thickness, e.g. body thickness (m)

V :

Bat flight speed (m s−1)

v :

Local airflow velocity (m s−1)

w :

Width, e.g. body width

η :

Mechanical efficiency (%)

θ:

Wingbeat amplitude—empirical above or below the body axis reference dorsal plane (degrees)

ρ:

Air density = 1.2256 kg m−3 at sea level and 15 °C

ω:

Wingbeat angular velocity (rad s−1)

(1 + δ):

Induced drag factor accounting for effect of non-elliptical wing spanwise lift distribution

body:

Body

dot:

Acceleration

ear:

Ear

head:

Head

h/t:

Tail membrane (uropatagium)

ind:

Indicated

max:

Maximum condition

mech:

Mechanical

pro:

Profile

para:

Parasitic

ref:

Reference condition

sh:

Shoulder

true:

True airspeed

w:

Wing

wd:

Wing disk (area)

wr:

Wrist

References

  1. Pennycuick, C.J.: Mechanics of flight. In: Farner, D.S., King, J.R. (eds.) Avian biology. Academic Press, New York (1975)

    Google Scholar 

  2. Norberg, U.M., Kunz, T.H., Steffensen, J.F., Winter, Y., Von Helversen, O.: The cost of hovering and forward flight in a nectar-feeding bat, Glossophaga soricina, estimated from aerodynamic theory. J. Exp. Biol. 182, 207–227 (1993)

    Google Scholar 

  3. Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R., Hedenström, A.: Leading-edge vortex improves lift in slow-flying bats. Science 319, 1250–1253 (2008)

    Article  Google Scholar 

  4. Persson, P.-O., Willis, D.J., Peraire, J.: Numerical simulation of flapping wings using a panel method and a high-order Navier–Stokes solver. Int. J. Numer. Method Eng. 1, 1–20 (2011)

    Google Scholar 

  5. Thomas, S.P.: Metabolism during flight of two species of bats, Phyllostomus hastatus and Pteropus gouldii. J. Exp. Biol. 63, 273–293 (1975)

    Google Scholar 

  6. Carpenter, R.E.: Flight physiology of flying foxes, Pteropus poliocephalus. J. Exp. Biol. 114, 619–647 (1985)

    Google Scholar 

  7. Carpenter, R.E.: Flight physiology of intermediate-sized fruit bats (Pteropodidae). J. Exp. Biol. 120, 79–103 (1986)

    Google Scholar 

  8. Winter, Y., von Helversen, O.: The energy cost of flight: do bats fly more cheaply than birds? J. Comp. Biol. B 168, 105–111 (1998)

    Google Scholar 

  9. von Busse, R., Swartz, S.M., Voigt, C.C.: Flight metabolism in relation to speed in Chiroptera: testing the U-shape paradigm in the short-tailed fruit bat Carollia perspicillata. J. Exp. Biol. 216, 2073–2080 (2013)

    Article  Google Scholar 

  10. Norberg, U.M.: Vertebrate flight. Springer, Berlin (1990)

    Book  Google Scholar 

  11. Rayner, J.M.V.: On aerodynamics and the energetics of vertebrate flapping flight. Contemp Math 141, 351–400 (1993)

    Article  MathSciNet  Google Scholar 

  12. Rayner, J.M.V.: Estimating power curves of flying vertebrates. J. Exp. Biol. 202, 3449–3461 (1999)

    Google Scholar 

  13. Lindhe Norberg, U.M., Winter, Y.: Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers. J. Exp. Biol. 219, 3887–3897 (2006)

    Article  Google Scholar 

  14. Tian, X., Iriarte-Diaz, J., Middleton, K., Galvao, R., Israeli, E., Roemer, A., Sullivan, A., Song, A., Swartz, S., Breuer, K.: Direct measurements of the kinematics and dynamics of bat flight. Bioinspiration Biomimetrics 1, S10–S18 (2006)

    Article  Google Scholar 

  15. Hedenström, A., Johansson, L.C., Wolf, M., von Busse, R., Winter, Y., Spedding, G.R.: Bat flight generates complex aerodynamic tracks. Science 316, 894–897 (2007)

    Article  Google Scholar 

  16. Pennycuick, C.J.: Modelling the flying bird. Academic Press, London (2008)

    Google Scholar 

  17. Hedenström, A., Muijres, F.T., von Busse, R., Johansson, L.C., Winter, Y., Spedding, G.R.: High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnel. Exp. Fluids 46, 923–932 (2009)

    Article  Google Scholar 

  18. Hubel, T.Y., Hristov, N.I., Swartz, S.M., Breuer, K.S.: Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat. J. R. Soc. Interface 9, 1120–1130 (2012)

    Article  Google Scholar 

  19. Hedenström, A., Johansson, L.C., Spedding, G.R.: Bird or bat: comparing airframe design and flight performance. Bioinspiration Biomimetics 4, 015001 (2009)

    Article  Google Scholar 

  20. Hubel, T.Y., Hristov, N.I., Swartz, S.M., Breuer, K.S.: Time-resolved wake structure and kinematics of bat flight. Exp. Fluids 46, 933–943 (2009)

    Article  Google Scholar 

  21. Hubel, T.Y., Riskin, D.K., Swartz, S.M., Breuer, K.S.: Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis. J. Exp. Biol. 213, 3427–3440 (2010)

    Article  Google Scholar 

  22. Bullen, R.D., McKenzie, N.L.: Scaling bat wingbeat frequency and amplitude. J. Exp. Biol. 205, 2615–2626 (2002)

    Google Scholar 

  23. Bullen, R.D., McKenzie, N.L., Spoelstra, G.: Can some Australian bats take advantage of flat-plate aerodynamics? ACTA Chiropterologica 15, 171–184 (2013)

    Article  Google Scholar 

  24. Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Cesnik, C.E.S., Lui, H.: Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284–327 (2010)

    Article  Google Scholar 

  25. Pennycuick, C.J.: The mechanics of bird migration. Ibis 111, 525–556 (1969)

    Article  Google Scholar 

  26. Weis-Fogh, T.: Energetics of hovering flight in hummingbirds and in drosophilae. J. Exp. Biol. 56, 79–104 (1972)

    Google Scholar 

  27. Tucker, V.A.: Bird metabolism during flight: evaluation of a theory. J. Exp. Biol. 58, 689–709 (1973)

    Google Scholar 

  28. Grodzinski, U., Spiegel, O., Korine, C., Holdreid, M.W.: Context dependent flight speed: evidence for energetically optimal flight speed in the bat Pipistrellus kuhlii. J. Anim. Ecol. 78, 540–548 (2009)

    Article  Google Scholar 

  29. Hoerner, S.F.: Fluid dynamic drag. Hoerner Fluid Dynamics, New Jersey (1965)

    Google Scholar 

  30. Pennycuick, C.J.: Bird flight performance: a practical calculation manual. Oxford University Press, Oxford (1989)

    Google Scholar 

  31. Bullen, R.D., McKenzie, N.L.: Bat wing airfoil and planform structures relating to aerodynamic characteristics. Aust. J. Zool. 55, 237–247 (2007)

    Article  Google Scholar 

  32. Schmitz F.W.: Aerodynamics Of The Model Airplane. Part 1. Airfoil Measurements (1942). Translated at Redstone Scientific Information Center RSIC-721 (1967)

  33. Simons, M.: Model aircraft aerodynamics. Nexus Special Interests, Hemel Hempstead (1999)

    Google Scholar 

  34. Bullen, R.D., McKenzie, N.L.: Bat airframe design: flight performance, stability and control in relation to foraging ecology. Aust. J. Zool. 49, 235–262 (2001)

    Article  Google Scholar 

  35. Bullen, R.D., McKenzie, N.L.: Aerodynamic cleanliness in bats. Aust. J. Zool. 56, 281–296 (2009)

    Article  Google Scholar 

  36. Pennycuick, C.J., Obrecht, H.H., Fuller, M.R.: Empirical estimates of body drag of large waterfowl and raptors. J. Exp. Biol. 135, 253–264 (1988)

    Google Scholar 

  37. Bullen, R.D., McKenzie, N.L.: The pelage of bats (Chiroptera) and the presence of aerodynamic riblets: the effect on aerodynamic cleanliness. Zoology (Jena, Germany) 111, 279–286 (2008)

    Article  Google Scholar 

  38. Cruz-Neto, A.P., Jones, K.E.: Exploring the evolution of the basal metabolic rate in bats. In: Zubaid, A., McCracken, G.F., Kunz, T.H. (eds.) Functional and evolutionary ecology of bats. Oxford University Press, Oxford (2006)

    Google Scholar 

  39. Cheverud, J.M., Dow, M.M.: An autocorrelation analysis of genetic variation due to lineal fission in social groups of rhesus macaques. Am. J. Phys. Anthropol. 67, 113–121 (1985)

    Article  Google Scholar 

  40. Jones, K.E., Purvis, A., MacLarnon, A., Bininda-Edmonds, O.R.P., Simmons, N.B.: A phylogenetic supertree of the bats (Mammalia: chiroptera). Biol. Rev. 77, 223–259 (2002)

    Article  Google Scholar 

  41. Alexander, R.M.: Energy for animal life. Oxford University Press, Oxford (1999)

    Google Scholar 

  42. Norberg, U.M., Rayner, J.M.V.: Ecological morphology and flight in bats (Mammalia: chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. Zool. Soc. Lon. B 316, 335–427 (1987)

    Article  Google Scholar 

  43. Pennycuick, C.J.: Gliding flight of the dog-faced bat Rousettus aegyptiacus observed in a wind tunnel. J. Exp. Biol. 55, 833–845 (1971)

    Google Scholar 

  44. Bishop, C.M.: Heart mass and the maximum cardiac output of birds and mammals: implications for estimating the maximum aerobic power input of flying animals. Philos. Trans. R. Soc. Lond. B. 352, 447–456 (1997)

    Article  Google Scholar 

  45. Speakman, J.R., Thomas, D.W.: Physiological ecology and energetics of bats. In: Kunz, T.H., Fenton, M.B. (eds.) Bat ecology. University of Chicago Press, Chicago (2003)

    Google Scholar 

  46. Spedding, G.R.: The wake of a kestrel (Falco tinnunculus) in gliding flight. J. Exp. Biol. 127, 45–57 (1987)

    Google Scholar 

  47. Full, R.J.: Mechanics and energetics of terrestrial locomotion: bipeds to polypeds. In: Wieser, W., Gnaiger, E. (eds.) Energy transformations in cells and organisms, pp. 175–182. Thieme, Stuttgart (1989)

    Google Scholar 

  48. Dial, K.P., Biewener, A.A.: Pectoralis muscle force and power output during different modes of flight in pigeons (Columba livia). J. Exp. Biol. 176, 31–54 (1993)

    Google Scholar 

  49. Askew, G.N., Marsh, R.L., Ellington, C.P.: The mechanical power output of the flight muscles of blue-brested quail (Coturnix chinensis). During take-off. J. Exp. Biol. 204, 3601–3619 (2001)

    Google Scholar 

  50. Ward, S., Moller, U., Rayner, J.M.V., Jackson, D.M., Nachtigail, W., Speakman, J.R.: Metabolic power of European starlings Sturnus vulgaris during flight in a wing tunnel, estimated from heart transfer modelling, doubly labeled water and mask respirometry. J. Exp. Biol. 207, 4291–4298 (2004)

    Article  Google Scholar 

  51. Morris, C.R., Nelson, F.E., Askew, G.N.: The metabolic power requirements of flight and estimates of flight muscle efficiency in the cockatiel (Nymphicus hollandicus). J. Exp. Biol. 213, 2788–2796 (2010)

    Article  Google Scholar 

  52. Vaughan, T.A.: The muscular system. In: Wimsatt, W.A. (ed.) Biology of bats, vol. 1, pp. 140–193. Academic Press, New York (1970)

    Google Scholar 

  53. Bullen, R.D., McKenzie, N.L.: Bat flight-muscle mass: implications for foraging strategy. Australian Journal of Zoology 52, 605–622 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the Western Australian Department of Parks and Wildlife for providing laboratory facilities used during the preparation of this manuscript. Information on branch lengths used to calculate the distance matrix for the phylogenetic correction of BMR data was provided by Kate Jones (Institute of Zoology, UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Bullen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullen, R.D., McKenzie, N.L. & Cruz-Neto, A.P. Aerodynamic power and mechanical efficiency of bat airframes using a quasi-steady model. CEAS Aeronaut J 5, 253–264 (2014). https://doi.org/10.1007/s13272-014-0104-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-014-0104-5

Keywords

Navigation