Skip to main content
Log in

Numerical and experimental investigation of an impeller tip clearance variation in an aero-engine centrifugal compressor with close-coupled pipe-diffuser

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The subject of this paper is the experimental and numerical investigation of the influence of impeller tip clearance on the aerodynamics of a high-pressure transonic centrifugal compressor used in an aero-engine application. The overall change in aerodynamic performance of the stage, the isolated impeller and the isolated diffuser is analyzed. Local flow phenomena, responsible for the change in performance, are examined in closer detail. Experimental data from a state-of-the-art test rig, containing detailed 2D particle-image-velocimetry measurements, are used. 3D Reynolds-averaged Navier–Stokes simulations are conducted with the CFD solver turbo-machinery research aerodynamics computational environment to get a detailed insight into the flow field. This study contributes towards a better understanding of the principal flow phenomena of a centrifugal compressor with a close-coupled pipe-diffuser and the additional losses introduced in the individual compressor components by an increased impeller tip clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

b (mm):

Blade height—hub to tip

c p :

Static pressure recovery

MFC (kg/s):

Corrected mass flow

NML:

Normalized meridional length

NOM:

Nominal tip clearance

OP:

Operation point

PIV:

Particle-image-velocimetry

PS:

Pressure side

RANS:

Reynolds-averaged Navier–Stokes

s [J/(kg K)]:

Entropy

SS:

Suction side

t (mm):

Tip clearance

TC:

Maximum tip clearance

TTR:

Total temperature ratio

TPR:

Total pressure ratio

RPM (1/min):

Revolutions per minute

v (m/s):

Absolute velocity

w (m/s):

Relative velocity

α (°):

Absolute flow angle

η :

Efficiency

λ 2 :

Relative tip clearance = t/b

ξ :

Diffuser center line coordinate

ω :

Total pressure loss

Ω:

Impeller rotation

is:

Isentropic

m:

Meridional

norm:

Normalized value

θ :

Circumferential

References

  1. Brasz, J.: Investigation into the effect of tip clearance on centrifugal compressor performance. ASME 88-GT-190 (1988)

  2. Eckert, B., Schnell, E.:Axial- und Radialkompressoren. Anwendung, Theorie, Berechnung, Springer (1961)

  3. Turunen-Saaresti, T., Jaatinen, A.: Influence of the different design parameters to the centrifugal compressor tip clearance loss. In: Proceedings of ASME Turbo Expo 2011, GT2011-46627 (2011)

  4. Bansod, P., Rhie, C.: Computation of flow through a centrifugal impeller with tip leakage. AIAA 90-2021 (1990)

  5. Senoo, Y., Ishida, M.: Deterioration of compressor performance due to tip clearance of centrifugal impellers. ASME J. Turbomach. 109, 55–61 (1987)

    Article  Google Scholar 

  6. Majidi, K.: Numerische Berechnung der Sekundärströmung in radialen Kreiselpumpen zur Feststoffförderung. PhD thesis, Technische Universität Berlin (1997)

  7. Weiss, C., Grates, D.R., Thermann, H., Niehuis, R.: Numerical investigation of the influence of the tip clearance on wake formation inside a radial impeller. GT2003-38279 (2003)

  8. Runstadler, P.W., Dolan, F.X.: Diffuser Data Book. Creare Incorporated (1975)

  9. Ziegler, U., et al.: A Study on impeller-diffuser interaction-part I: influence on the performance. GT-2002-30381 (2002)

  10. Ziegler, U., et al.: A study on impeller-diffuser interaction-part II: detailed flow analysis: influence on the performance. GT-2002-30382 (2002)

  11. Zachau, U., Niehuis, R., Hoenen, H., Wisler, D.C.: Experimental investigation of the flow in the pipe diffuser of a centrifugal compressor stage under selected parameter variations. GT2009-59320 (2009)

  12. Grates, D.R., et al.: Numercial investigation of the unsteady flow inside a centrifugal compressor stage with pipe diffuser. J. Turbomach. 136, 031012-1-14 (2014)

    Google Scholar 

  13. Kunte, R., et al.: Experimental and numerical investigation of tip clearance and bleed effects in a centrifugal compressor with pipe diffuser. J. Turbomach. 135(1), 011005 (2012)

    Article  Google Scholar 

  14. Wallis, C., Moussa, Z., Srivastava, B.: A stage calculation in a centrifugal compressor. ICAS2002 CONGRESS (2002)

  15. Wilkosz, B., et al.: Numerical investigation of the unsteady interaction within a close-coupled centrifugal compressor used in an aero engine. J. Turbomach. 136(4), 041006 (2013)

    Google Scholar 

  16. Bryans, A.: Diffuser for a centrifugal compressor. US Pate Number 4,576,550 (1986)

  17. Zachcial, A.: Mischungsebenenmodellierung zur Analyse der raeumlichen Stroemung in mehrstufigen Turbomaschinenkomponenten. ISBN-10: 3-8322-5115-4 (2006)

  18. Giles, M.: Non-reflecting boundary conditions for the Euler equations. In: Massachusetts Institute of Technology, Department of Aeronautics & Astronautics—internal report (1988)

  19. Kozulovic, D., et al.: Modelling the streamline curvature effects in turbomachinery flows. GT2006-90265 (2006)

  20. Denton, J.D.: Loss mechanisms in turbomachines. ASME 93-GT-435 (1993)

  21. Schimming, P., Starken, H.: Data reduction of two dimensional cascade measurements. AGARD 328 (1975)

  22. Wilkosz, B.: Numerical investigation of the steady separation inducing mechanisms in a passage diffuser with application of two-equation turbulence models. In: proceedings CMFF 2012-254 (2012)

Download references

Acknowledgments

General Electric Aviation (GEA) funds the Centrifugal Compressor Technology Project at the Institute of Jet Propulsion and Turbomachinery. This is gratefully acknowledged. Further the GEA Compressor and Fan Aero group (Lynn) extensively supports this research. Special thanks go to the DLR Cologne for the close cooperation and support regarding TRACE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Wilkosz.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 10–12, 2012, Berlin, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkosz, B., Kunte, R., Schwarz, P. et al. Numerical and experimental investigation of an impeller tip clearance variation in an aero-engine centrifugal compressor with close-coupled pipe-diffuser. CEAS Aeronaut J 5, 171–183 (2014). https://doi.org/10.1007/s13272-014-0098-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-014-0098-z

Keywords

Navigation