Skip to main content
Log in

Enhancement of aircraft wake vortex decay in ground proximity

Experiment versus Simulation

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Aircraft wake vortex evolution in ground proximity is investigated experimentally in a water towing tank, as well as numerically with wall-resolved large eddy simulation (LES). With these complementary instruments the enhancement of wake vortex decay by obstacles, introduced at the ground surface, is analyzed. The experimental methods include time-resolved stereo particle image velocimetry and vortex core visualization. For comparison with the experiment, the LES considers the turbulent wake of the strut, holding the towed aircraft model. Wake vortex trajectories and circulation decay are compared at different distances from the obstacle. Tracers are employed to visualize the obstacle’s effects on the vortex core, in LES and experiment. The experimentally obtained trajectories and decay characteristics are reproduced qualitatively by simulations, whereas the agreement is degraded at later times. Beyond that, the vortex dynamics, deduced from the LES results, help to understand the experimental observations. The obstacles trigger helical secondary vortex structures, propagating along the primary vortices. The observed propagation speed of the helical disturbance is fairly well predicted by the suggested simple model. It is shown that the obstacles significantly modify the vortex interaction with the ground and substantially accelerate vortex decay. Two neighboring obstacles lead to colliding disturbances that further enhance vortex decay rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. In a distance of \(\Updelta x^*=1.05\) not enough data could be acquired after t* = 3 to evaluate statistics.

Abbreviations

\(\varGamma\) :

Circulation, m2/s

\(\varGamma_0\) :

Initial vortex circulation, m2/s

\(\nu\) :

Molecular viscosity, m2/s

\(\nu_{\rm t}\) :

Turbulent viscosity, m2/s

ω :

Vorticity, 1/s

ω x ω y ω z :

Vorticity components, 1/s

ρ :

Density, kg/m3

σ:

Standard deviation

a :

Radius of secondary vortex structure, m

AB :

Parameters for strut wake turbulence model

b 0 :

Initial vortex separation, m

C :

Chord length, mm

C D :

Drag coefficient, 1/m

d :

Chord thickness, mm

E strut :

Turbulent kinetic energy of strut wake, Nm

\(E_\varGamma\) :

Turbulent kinetic energy of the vortex, Nm

h 0 :

Initial vortex height, m

L x L y L z :

Dimensions, m

l strut :

Length of the strut, m

N x N y N z :

Grid points

p :

Pressure, N/m2

R :

Curvature radius, m

\(Re_\varGamma\) :

Vortex Reynolds number

\(Re_{\rm c}\) :

Chord Reynolds number based on towing speed

r c :

Vortex core radius, m

t :

Time, s

t 0 :

Time unit, s

U 0 :

Towing speed, m/s

u i uvw :

Velocity components, m/s

U hel :

Propagation speed of helix front, m/s

V 0 :

Initial vortex descent speed, m/s

x i xyz :

Coordinates, m

\(\Updelta x\) :

Distance to obstacle, m

0:

Reference state

max:

Maximum value

rms:

Root mean square

hel:

Helix

L:

LES

ring:

Ring

W:

WSG

′:

Deviation from reference state

*:

Normalized with respect to vortex flow

+:

Normalized by chord length

DLR:

German Aerospace Center

ICAO:

International Civil Aviation Organization

LES:

Large-eddy simulation

PIV:

Particle image velocimetry

SVS:

Secondary vortex structure

WSG:

Wasser Schleppkanal Göttingen

WVAS:

Wake vortex advisory system

References

  1. Gerz, T., Holzäpfel, F., Bryant, W., Köpp, F., Ferch, M., Tafferner, A., Winckelmans, G.: Research towards a wake-vortex advisory system for optimal aircraft spacing. C. R. Phys. 6(4–5), 501–523 (2005)

    Article  Google Scholar 

  2. Gerz, T., Holzäpfel, F., Darracq, D.: Commercial aircraft wake vortices. Prog. Aerosp. Sci. 38(3), 181–208 (2002)

    Article  Google Scholar 

  3. Spalart, P.: Airplane trailing vortices. Annu. Rev. Fluid Mech. 30(1), 107–138 (1998)

    Article  MathSciNet  Google Scholar 

  4. Critchley, J., Foot, P.: UK CAA wake vortex database: analysis of incidents reported between 1982 and 1990. Civil Aviation Authority, CAA Paper, vol. 91 (1991)

  5. Holzäpfel, F., Steen, M.: Aircraft wake-vortex evolution in ground proximity: analysis and parameterization. AIAA J. 45, 218–227 (2007)

    Article  Google Scholar 

  6. Robins, R., Delisi, D.: Potential hazard of aircraft wake vortices in ground effect with crosswind. J. Aircr. 2, 201–206 (1993)

    Article  Google Scholar 

  7. Türk, L., Coors, D., Jacob, D.: Behavior of wake vortices near the ground over a large range of reynolds numbers. Aerosp. Sci. Technol. 3(2), 71–81 (1999)

    Article  MATH  Google Scholar 

  8. Harvey, J., Perry, F.: Flowfield produced by trailing vortices in the vicinity of the ground. AIAA J. 9(8), 1659–1660 (1971)

    Article  Google Scholar 

  9. Dufresne, L., Baumann, R., Gerz, T., Winckelmans, G., Moet, H., Capart, R.: Large eddy simulation of wake vortex flows at very high reynolds numbers: a comparison of different methodologies. Technical Report, AWIATOR, D1.14-16 (2005)

  10. Proctor, F.H., Hamilton, D.W., Han, J.: Wake vortex transport and decay in ground effect: Vortex linking with the ground. In: AIAA, 2000-0757, 38th Aerospace Sciences Meeting & Exhibit, Reno (2000)

  11. Spalart, P., Strelets, M., Travin, A., Shur, M.: Modelling the interaction of a vortex pair with the ground. Fluid Dyn. 36(6), 899–908 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Stephan, A., Holzäpfel, F., Misaka, T.: (2013) Aircraft wake vortex decay in ground proximity—physical mechanisms and artificial enhancement. J. Aircr . http://arc.aiaa.org/doi/abs/10.2514/1.J051609. Accessed 19 June 2013

  13. Coustols, E., Stumpf, E., Jaquin, L., Moens, F., Vollmers, H., Gerz, T.: Minimized wake: a collaborative research programme on aircraft wake vortices. AIAA Paper 2003-0938 (2003)

  14. Stumpf, E.: Study of four-vortex aircraft wakes and layout of corresponding aircraft configurations. J. Aircr. 42, 722–730 (2005)

    Article  Google Scholar 

  15. Breitsamter, C.: Wake vortex characteristics of transport aircraft. Prog. Aerosp. Sci. 47, 89–134 (2011)

    Article  Google Scholar 

  16. Duponcheel, M., Lonfils, T., Bricteux, L., Winckelmans, G.: Simulations of three-dimensional wake vortices in ground effest using a fourth-order incompressible code. In: 7th National Congress on Theoretical and Applied Mechanics, Mons (2006)

  17. Georges, L., Geuzaine, P., Duponchel, M., Bricteux, L., Lonfils, T., Winckelmans, G., Giovannini, A.: Technical report 3.1.1-3, les of two-vortex system in ground effect with and without wind. Technical Report, Université catholique de Louvain (UCL), Institut de Mécanique des Fluides de Toulouse (IMFT) (2005)

  18. Delisi, D.P.: Laboratory measurements of the effect of ambient turbulence on trailing vortex evolution. In: 44th AIAA Aerospace Sciences Meeting and Exhibits, San Reno (2006)

  19. Cottin, C., Desenfans, O.G.D., Winckelmans, G.: Towing-tank visualization of two-vortex systems in ground effect. Technical Report, FAR-Wake, Université Catholique de Louvain (UCL) (2007)

  20. Konrath, R., Carmer, C., Schrauf, G., Schmidt, K., Winckelmans, G., Cottin, C., Desenfans, O.G.D., Cocle, R.: Dynamics and decay of spatially-evolving two- and four-vortex wakes near the ground. Technical Report, FAR-Wake project deliverable D 3.1.2 (2008)

  21. Hah, C., Lakshminarayana, B.: Measurement and prediction of mean velocity and turbulence structure in the near wake of an airfoil. J. Fluid Mech. 115, 251–282 (1982)

    Article  Google Scholar 

  22. Zhang, Q., Lee, S.W., Ligrani, P.M.: Effects of surface roughness and freestream turbulence on the wake turbulence structure of a symmetric airfoil. Phys. Fluids 16(6), 2044–2053 (2004)

    Article  Google Scholar 

  23. Manhart, M.: A zonal grid algorithm for dns of turbulent boundary layer. Comput. Fluids 33(3), 435–461 (2004)

    Article  MATH  Google Scholar 

  24. Meneveau, C., Lund, T.S., Cabot, W.H.: A lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

    Article  MATH  Google Scholar 

  25. Holzäpfel, F.: Adjustment of subgrid-scale parametrizations to strong streamline curvature. AIAA J. 42(7), 1369–1377 (2004)

    Article  Google Scholar 

  26. Shen, S., Ding, F., Han, J., Proctor, F.H.: Numerical modeling studies of wake vortices: real case simulations. In: 37th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA (1999)

  27. Hokpunna, A., Manhart, M.: Compact fourth-order finite volume method for numarical solutions of Navier–Stokes equations on staggered grids. J. Comput. Phys. 229(20), 7545–7570 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Misaka, T., Holzäpfel, F., Gerz, T.: Wake evolution of wing-body configuration from roll-up to vortex decay. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, USA., 2012-0428, pp. 1–15 (2012)

  29. Béchara, W., Bailly, C., Lafon, P.: Stochastic approach to noise modeling for free turbulent flows. AIAA J. 32(3), 455–463 (1994)

    Article  MATH  Google Scholar 

  30. de Bruin, A., Winckelmans, G.: Cross-flow kinetic energy and core size growth of analytically defined wake vortex pairs. Technical Report, NLR-CR-2005-412, NLR (2005)

  31. Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Ferreira Gago, C.: Analysis of wake vortex decay mechanisms in the atmosphere. Aerosp. Sci. Technol. 7, 263–275 (2003)

    Article  MATH  Google Scholar 

  32. Misaka, T., Holzäpfel, F., Hennemann, I., Gerz, T., Manhart, M., Schwertfirm, F.: Vortex bursting and tracer transport of a counter-rotating vortex pair. Phys. Fluids 24, 025,104-1–025,104-21 (2012)

    Google Scholar 

  33. Holzäpfel, F.: Probabilistic two-phase wake vortex decay and transport model. J. Aircr. 40(2), 323–331 (2003)

    Article  Google Scholar 

  34. Konrath, R., Pallek, D., Mattner, H., v. Cramer C.: Analysis of flow field measurements obtained in a large tow tank regarding the decay of wake vortices in the far-field for two- and four-vortex systems. In: AIAA-Paper 2009-342, 47th AIAA Aerospace Science Meeting, Orlando (Florida) (2009)

  35. Holzäpfel, F., Gerz, T., Baumann, R.: The turbulent decay of trailing vortex pairs in stably stratified environments. Aerosp. Sci. Technol. 5(2), 95–108 (2001)

    Article  MATH  Google Scholar 

  36. Moet, H., Laporte, F., Chevalier, G., Poinsot, T.: Wave propagation in vortices and vortex bursting. Phys. Fluids 17, 054,109 (2005)

    Google Scholar 

  37. http://www.youtube.com/watch?v=KqU70RORXtA

  38. http://www.youtube.com/watch?v=oHGqxM1-rAI

  39. Lamb, H.: Hydrodynamics. Cambridge University Press, London (1957)

Download references

Acknowledgments

The simulations have been performed using supercomputers at Leibniz-Rechenzentrum (LRZ). We would like to thank Prof. M. Manhart for providing the original version of the LES code MGLET. The work was funded by DLR project Wetter & Fliegen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Stephan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephan, A., Holzäpfel, F., Misaka, T. et al. Enhancement of aircraft wake vortex decay in ground proximity. CEAS Aeronaut J 5, 109–125 (2014). https://doi.org/10.1007/s13272-013-0094-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-013-0094-8

Keywords

Navigation