Skip to main content
Log in

Detection of LINE RT elements in the olive flounder (Paralichthys olivaceus) genome and expression analysis after infection with S. parauberis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Long interspersed nuclear elements (LINEs) are widely distributed in the vertebrate genome, and can be either beneficial or detrimental to the host genome. Here we identified three members of LINE RT elements in the olive flounder genome. They showed high amino acid sequence identity (89–99 %), and the sequences of LINE reverse transcriptase (RT) in olive flounder are closely related to those of coral grouper, European seabass, and three-spined stickleback. Real-time reverse transcription-polymerase chain reaction analysis indicated that expression of the OF (Olive flounder)-LINE Chr3-1 RT increased more in spleen than in other tissues after treatment with the pathogen Streptococcus parauberis. These data may form the basis for further studies on the function of retroelements in infected olive flounder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379

    Article  CAS  PubMed  Google Scholar 

  • Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  Google Scholar 

  • Boldrick JC, Alizadeh AA, Diehn M, Dudoit S, Liu CL, Belcher CE, Botstein D, Staudt LM, Brown PO, Relman DA (2002) Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci USA 99:972–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalopin D, Naville M, Plard F, Galiana D, Volff J-N (2015) Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 7:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chénais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 509:7–15

    Article  PubMed  Google Scholar 

  • Cho HK, Kim J, Moon JY, Nam B-H, Kim Y-O, Kim W-J, Park JY, An CM, Cheong J, Kong HJ (2016) Microarray analysis of gene expression in olive flounder liver infected with viral haemorrhagic septicaemia virus (VHSV). Fish Shellfish Immunol 49:66–78

    Article  CAS  PubMed  Google Scholar 

  • Crow MK (2010) Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity 43:7–16

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Huang Q, Boeke JD (2011) Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 12:1

    Article  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Science 338:758–767

    Article  CAS  PubMed  Google Scholar 

  • Furano AV, Duvernell DD, Boissinot S (2004) L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20:9–14

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu L, Sun J-S, Geng X-Y, Pan B-P (2013) Molecular characterization and expression analysis of Toll-like receptor 21 cDNA from Paralichthys olivaceus. Fish Shellfish Immunol 35:1138–1145

    Article  CAS  PubMed  Google Scholar 

  • Jin C-N, Harikrishnan R, Moon Y-G, Kim M-C, Kim J-S, Balasundaram C, Azad I, Heo M-S (2009) Histopathological changes of Korea cultured olive flounder, Paralichthys olivaceus due to scuticociliatosis caused by histophagous scuticociliate, Philasterides dicentrarachi. Vet Parasitol 161:292–301

    Article  PubMed  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH, Goodier JL (2002) LINE drive: retrotransposition and genome instability. Cell 110:277–280

    Article  CAS  PubMed  Google Scholar 

  • Kim M-S, Lim SU, Hwang J-Y, Kim J-Y, Kim O-S, Seo JS, Ahn SJ, Kim C-B, Lee HH (2006) A LINE element from the olive flounder (Paralichthys olivaceus) shows similarity to the Maui non-LTR retrotransposon. Korean J Genet 28:229–236

    CAS  Google Scholar 

  • Kong HJ, Moon J-H, Han Y-H, Nam B-H, Kim Y-O, Kim W-J, Kim DG, Kim HS, Kim J-H, Kim B-S (2011) PoCRIP1, Paralichthys olivaceus cysteine-rich intestinal protein 1: molecular characterization, expression analysis upon Edwardsiella tarda challenge and a possible role in the immune regulation. Fish Shellfish Immunol 30:917–922

    Article  CAS  PubMed  Google Scholar 

  • Krücken J, Stamm O, Schmitt-Wrede H-P, Mincheva A, Lichter P, Wunderlich F (1999) Spleen-specific expression of the malaria-inducible intronless mouse gene imap38. J Biol Chem 274:24383–24391

    Article  PubMed  Google Scholar 

  • Li C, Ortí G, Zhang G, Lu G (2007) A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol Biol 7:1

    Article  Google Scholar 

  • Li C, Zhang Y, Wang R, Lu J, Nandi S, Mohanty S, Terhune J, Liu Z, Peatman E (2012) RNA-seq analysis of mucosal immune responses reveals signatures of intestinal barrier disruption and pathogen entry following Edwardsiella ictaluri infection in channel catfish, Ictalurus punctatus. Fish Shellfish Immunol 32:816–827

    Article  CAS  PubMed  Google Scholar 

  • MacDuff DA, Demorest ZL, Harris RS (2009) AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity. Nucleic Acids Res:gkp030

  • Matsuyama T, Fujiwara A, Nakayasu C, Kamaishi T, Oseko N, Hirono I, Aoki T (2007) Gene expression of leucocytes in vaccinated Japanese flounder (Paralichthys olivaceus) during the course of experimental infection with Edwardsiella tarda. Fish Shellfish Immunol 22:598–607

    Article  CAS  PubMed  Google Scholar 

  • Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927

    Article  CAS  PubMed  Google Scholar 

  • Nam B-H, Byon J-Y, Kim Y-O, Park E-M, Cho Y-C, Cheong J (2007) Molecular cloning and characterisation of the flounder (Paralichthys olivaceus) interleukin-6 gene. Fish Shellfish Immunol 23:231–236

    Article  CAS  PubMed  Google Scholar 

  • Nikaido M, Rooney AP, Okada N (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci USA 96:10261–10266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura O, Yasue H (1999) Genetic relationships among hippopotamus, whales, and bovine based on SINE insertion analysis. Mamm Genome 10:526–527

    Article  CAS  PubMed  Google Scholar 

  • Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16:37–43

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AL, Anderson LM (2006) Repetitive DNA elements as mediators of genomic change in response to environmental cues. Biol Rev 81:531–543

    Article  PubMed  Google Scholar 

  • Shedlock AM (2006) Phylogenomic investigation of CR1 LINE diversity in reptiles. Syst Biol 55:902–911

    Article  PubMed  Google Scholar 

  • Shedlock AM, Okada N (2000) SINE insertions: powerful tools for molecular systematics. BioEssays 22:148–160

    Article  CAS  PubMed  Google Scholar 

  • Smit AF, Hubley R, Green P (1996) RepeatMasker Open-3.0

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson SJ, Goh FG, Banks H, Krausgruber T, Kotenko SV, Foxwell BM, Udalova IA (2009) The role of transposable elements in the regulation of IFN-λ1 gene expression. Proc Natl Acad Sci 106:11564–11569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff J-N (2015) Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 23:505–531

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • W-j Zheng, Sun L (2011) Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). Fish Shellfish Immunol 30:638–645

    Article  Google Scholar 

Download references

Acknowledgments

This research was a part of the project titled “Omics based on fishery disease control technology development and industrialization (20150242),” funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Ethics declarations

Pusan National University guidelines for the care and use of animals were followed.

Conflict of interest

J-AG declares that he has no conflict of interest. G-HN declares that he has no conflict of interest. W-JK declares that he has no conflict of interest. H-EL declares that she has no conflict of interest. AM declares that he has no conflict of interest. YC declares that she has no conflict of interest. C-IP declares that he has no conflict of interest. D-HK declares that he has no conflict of interest. YHC declares that he has no conflict of interest. H-JC declares that he has no conflict of interest. DY declares that she has no conflict of interest. SK declares that he has no conflict of interest. H-SK declares that he has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gim, JA., Nam, GH., Kim, WJ. et al. Detection of LINE RT elements in the olive flounder (Paralichthys olivaceus) genome and expression analysis after infection with S. parauberis . Genes Genom 38, 1105–1110 (2016). https://doi.org/10.1007/s13258-016-0457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0457-8

Keywords

Navigation