Skip to main content
Log in

Characterization of genes coding for galacturonosyltransferase-like (GATL) proteins in rice

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

In the present study, seven galacturonosyltransferase-like (GATL) genes (OsGATLs) in rice (Oryza sativa L.) were genome-widely identified and the chromosomal locations and the gene structures of which were characterized. Under normal condition, OsGATL2 and OsGATL3 are highly expressed in root, while OsGATL4 is highly expressed in stem and leaf. Many cis-elements related to stress response and plant hormone were found in the promoter sequence of each OsGATL. The expression patterns of these OsGATL genes under treatment with abscisic acid (ABA), drought and low temperature were assessed by qRT-PCR. The expression levels of most OsGATLs significantly increased following the treatments with drought or low temperature. In addition, physicochemical properties of OsGATLs and phylogenetic analysis with GATL from rice and several other species were performed. 3D structures and protein–protein interaction (PPI) network of OsGATLs were further predicted by Swiss-model and STRING 9.0 database, respectively. The identification and bioinformatic analysis of GATL family in rice could provide reference data for further study on their biological functions, especially in the responsiveness to hormones and stress signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atmodjo MA, Sakuragi Y, Zhu X, Burrell AJ, Mohanty SS, Atwood JA, Orlando R, Scheller HV, Mohnen D (2011) Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan: galacturonosyltransferase complex. Proc Natl Acad Sci USA 108:20225–20230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:3535–3542

    Article  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  CAS  PubMed  Google Scholar 

  • Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350

    Article  CAS  PubMed  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res 42:W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouton S, Leboeuf E, Mouille G, Leydecker MT, Talbotec J, Granier F, Lahaye M, Hofte H, Truong HN (2002) QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14:2577–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DM, Goubet F, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52:1154–1168

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Zhang ZN, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57:732–746

    Article  CAS  PubMed  Google Scholar 

  • Caffall KH, Pattathil S, Phillips SE, Hahn MG, Mohnen D (2009) Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa. Mol Plant 2:1000–1014

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate- Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Cao PJ, Bartley LE, Jung KH, Ronald PC (2008) Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases. Mol Plant 1:858–877

    Article  CAS  PubMed  Google Scholar 

  • Cao M, Pietras CM, Feng X, Doroschak KJ, Schaffner T, Park J, Zhang H, Cowen LJ, Hescott BJ (2014) New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence. Bioinformatics 30:i219–i227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  • Fangel JU, Petersen BL, Jensen NB, Willats WGT, Bacic A, Egelund J (2011) A putative Arabidopsis thaliana glycosyltransferase, At4g01220, which is closely related to three plant cell wall-specific xylosyltransferases, is differentially expressed spatially and temporally. Plant Sci 180:470–479

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Mistry J, Schuster-Bo ckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R et al (2006) Pfam: clans, Web tools and services. Nucleic Acids Res 34:D247–D251

    Article  CAS  PubMed  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucl Acids Res 41:D808–D815

    Article  CAS  PubMed  Google Scholar 

  • Gopal S, Schroeder M, Pieper U, Sczyrba A, Aytekin-Kurban G, Bekiranov S, Fajardo JE, Eswar N, Sanchez R, Sali A, Gaasterland T (2001) Homology-based annotation yields 1,042 new candidate genes in the Drosophila melanogaster genome. Nat Genet 27:337–340

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:S162–S173

    Article  PubMed  Google Scholar 

  • Huang X, Duan M, Liao JK, Yuan X, Chen H, Feng JJ, Huang J, Zhang HS (2014) OsSLI1, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L.). Sci World J 2014:1–9

    Google Scholar 

  • Kim DY, Kwon SI, Choi C, Lee H, Ahn L, Park SR, Bae SC, Lee SC, Hwang DJ (2013) Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene 529:208–214

    Article  CAS  PubMed  Google Scholar 

  • Kong YZ, Zhou GK, Avci U, Gu XG, Jones C, Yin YB, Xu Y, Hahn MG (2009) Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional orthologs to PARVUS/AtGATL1 in Arabidopsis. Mol Plant 2:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Kong YZ, Zhou GK, Yin YB, Xu Y, Pattathil S, Hahn MG (2011) Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases. Plant Physiol 155:1791–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Y, Pena MJ, Renna L, Avci U, Pattathil S, Tuomivaara ST, Li X, Reiter WD, Brandizzi F, Hahn MG (2015) Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis. Plant Physiol 167:1296–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lao NT, Long D, Kiang S, Coupland G, Shoue DA, Carpita NC, Kavanagh TA (2003) Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis. Plant Mol Bio 53:687–701

    Article  Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides—a complex process. Curr Opin Plant Biol 9:621–630

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JL, Gao MH, Lv ML, Cao JS (2013) Structure, evolution, and expression of the beta-galactosidase gene family in Brassica campestris ssp chinensis. Plant Mol Biol Rep 31:1249–1260

    Article  CAS  Google Scholar 

  • Liu JL, Gao MH, Liu Y, Cao JS (2014) Decreased pollen viability and thicken pollen lntine in antisense silenced brassica campestris mutant of BcMF19. J Integr Agri 13:954–962

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luan WJ, Liu YQ, Zhang FX, Song YL, Wang ZY, Peng YK, Sun ZX (2011) OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotechnol J 9:513–524

    Article  CAS  PubMed  Google Scholar 

  • Orfila C, Sørensen SO, Harholt J, Geshi N, Crombie H, Truong HN, Reid JSG, Knox JP, Scheller HV (2005) QUASIMODO1 is expressed in vascular tissue of Arabidopsis thaliana inflorescence stems and affects homogalacturonan and xylan biosynthesis. Planta 222:613–622

    Article  CAS  PubMed  Google Scholar 

  • Perez-Diaz J, Wu TM, Perez-Diaz R, Ruiz-Lara S, Hong CY, Casaretto JA (2014) Organ- and stress-specific expression of the ASR genes in rice. Plant Cell Rep 33:61–73

    Article  CAS  PubMed  Google Scholar 

  • Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C (2007) The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homo-galacturonan, which are essential for secondary cell wall integrity. Plant Cell 19:237–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenwald AG, Krag SS (1990) Lec9 CHO glycosylation mutants are defective in the synthesis of dolichol. J Lipid Res 31:523–533

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol and Evol 4:406–425

    CAS  Google Scholar 

  • Schiefelbein JW, Furtek DB, Dooner HK, Nelson OE (1988) Two mutations in a maize bronze-1 allele caused by transposable elements of the Ac-Ds family alter the quantity and quality of the gene product. Genetics 120:767–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sterling JD, Atmodjo MA, Inwood SE, Kolli VSK, Quigley HF, Hahn MG, Mohnen D (2006) Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyl-transferase. PNAS USA 103:5236–5241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, de Cotte BV, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang W, Wang YQ, Liu YY, Wang JX, Zhang XQ, Ye D, Chen LQ (2013) Arabidopsis galacturonosyltransferase (GAUT) 13 and GAUT14 have redundant functions in pollen tube growth. Mol Plant 6:1131–1148

    Article  CAS  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An electronic fluorescent pictograph browser for exploring and analyzing large-scale biological data sets. PLoS One 2:1–12

    Article  Google Scholar 

  • Yin YB, Chen HL, Hahn MG, Mohnen D, Xu Y (2010) Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8. Plant Physiol 153:1729–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis: which end is up? Curr Opin Plant Biol 11:258–265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science foundation of China (No. 31260313 and 31560558), China Postdoctoral Science Foundation (No. 2014M561880), Jiangxi postdoctoral scientific research projects according to qualification (No. 2014KY38).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobo Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1025 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Luo, M., Yan, X. et al. Characterization of genes coding for galacturonosyltransferase-like (GATL) proteins in rice. Genes Genom 38, 917–929 (2016). https://doi.org/10.1007/s13258-016-0436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0436-0

Keywords

Navigation