Skip to main content
Log in

Transcriptome analysis of Arabidopsis thaliana in response to cement dust

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Cement dust is a major particulate air pollutants and can cause negative impacts on plant growth and development. The molecular bases of plant responses to cement dust are not elucidated. Therefore, a transcriptome analysis of Arabidopsis in response to cement dust was performed. In the present study, seedlings of Arabidopsis thaliana were exposed to cement dust at a rate of 1.5 g per 1 m2 area. Total RNA from control and cement-dust treated plants were used for transcriptome analysis using GeneChip® Arabidopsis ATH1 Genome Array. In response to cement dust application, the transcriptional profiling identified 1599 differentially expressed genes (DEGs) using a two-fold cutoff. Of these DEGs, 831 were up-regulated, and 768 were down-regulated. Differential expression of 15 genes from this list was validated using qRT-PCR. Gene ontology analysis using AgriGo program revealed that a large proportion of up-regulated DEGs are related to response to stimulus, response to stress, response to chemical stimulus, transcription factor activity, hydrolase activity, and carboxylesterase activity. While, a large proportion of down-regulated DEGs were mainly in the following categories: biosynthetic process, biological regulation, and response to stimulus, nucleic acid binding, transcription regulator activity, transcription factor activity, organelle lumen, nuclear lumen, and nucleolus. The DEGs up-regulated in response to cement dust include a set of reactive oxygen species scavenging enzymes (e.g., ascorbate peroxidase 2, peroxidases, glutathione S-transferases), heat shock proteins, late embryogenesis abundant proteins, ∆1-pyrroline-5-carboxylate synthase 1, as well as transcription factor genes of different families. This study is the first to provide a global view of the transcriptomic profiling of Arabidopsis in response to cement dust. The results will be helpful for better understanding the molecular basis for plant responses to cement dust pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abu-Romman S (2016) Genotypic response to heat stress in durum wheat and the expression of small HSP genes. Rend Lincei 27:261–267

    Article  Google Scholar 

  • Abu-Romman S, Alzubi J (2015) Effects of cement dust on the physiological activities of Arabidopsis thaliana. Am J Agric Biol Sci 10:157–164

    Article  Google Scholar 

  • Abu-Romman S, Suwwan M (2011) In vitro responses of cucumber microshoots to osmotic stress. Aust J Basic Appl Sci 5:617–623

    Google Scholar 

  • Abu-Romman SM, Ammari TG, Irshaid LA, Salameh NM, Hasan MK, Hasan HS (2011) Cloning and expression patterns of the HvP5CS gene from barley (Hordeum vulgare). J Food Agric Environ 9:279–284

    CAS  Google Scholar 

  • Abu-Romman S, Shatnawi M, Hasan M, Qrunfleh I, Omar S, Salem N (2012) cDNA cloning and expression analysis of a putative alternative oxidase HsAOX1 from wild barley (Hordeum spontaneum). Genes Genom 34:59–66

    Article  CAS  Google Scholar 

  • Agrawal M (2005) Effects of air pollution on agriculture: an issue of national concern. Natl Acad Sci Lett 28:93–106

    CAS  Google Scholar 

  • Aljeesh Y, Al Madhoun W, El Jabaly S (2015) Effect of exposure to cement dust on pulmonary function among cement plants workers in the Middle Governorate, Gaza, Palestine. Public Health Res 5:129–134

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Brugha RE, Jacobs L, Grigg J, Nawrot TS, Nemery B (2015) Carbon loading in airway macrophages as a biomarker for individual exposure to particulate matter air pollution—a critical review. Environ Int 74:32–41

    Article  CAS  PubMed  Google Scholar 

  • Bertoldi M, Borgini A, Tittarelli A, Fattore E, Cau A, Fanelli R, Crosignani P (2012) Health effects for the population living near a cement plant: an epidemiological assessment. Environ Int 41:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  CAS  PubMed  Google Scholar 

  • Bluvshtein N, Mahrer Y, Sandler A, Rytwo G (2011) Evaluating the impact of a limestone quarry on suspended and accumulated dust. Atmos Environ 45:1732–1739

    Article  CAS  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucl Acids Res 38:64–70

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114

    PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786

    Article  CAS  PubMed  Google Scholar 

  • Hundertmark M, Dimova R, Lengefeld J, Seckler R, Hincha DK (2011) The intrinsically disordered late embryogenesis abundant protein LEA18 from Arabidopsis thaliana modulates membrane stability through binding and folding. Biochim Biophys Acta 1808:446–453

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MZ, Shafig M (2001) Periodical effect of cement dust pollution on the growth of some plant species. Turk J Bot 25:19–24

    Google Scholar 

  • Janhäll S (2015) Review on urban vegetation and particle air pollution–deposition and dispersion. Atmos Environ 105:130–137

    Article  Google Scholar 

  • Kishor PK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Koulova A, Frishman WH (2014) Air pollution exposure as a risk factor for cardiovascular disease morbidity and mortality. Cardiol Rev 22:30–36

    Article  PubMed  Google Scholar 

  • Kumar RR, Goswami S, Sharma SK, Singh K, Gadpayle KA, Singh SD, Pathak H, Rai RD (2013) Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. J Plant Biochem Biotechnol 22:16–26

    Article  CAS  Google Scholar 

  • Lafragüeta C, García-Criado B, Arranz A, Vázquez-de-Aldana BR (2014) Germination of Medicago sativa is inhibited by soluble compounds in cement dust. Environ Sci Pollut Res 21:1285–1291

    Article  Google Scholar 

  • Liberek K, Lewandowska A, Ziętkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27:328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Xu H, Zhang L, Zheng Y (2011) Fe binding properties of two soybean (Glycine max L.) LEA4 proteins associated with antioxidant activity. Plant Cell Physiol 52:994–1002

    Article  CAS  PubMed  Google Scholar 

  • Lukjanova A, Mandre M (2010) Effects of alkalization of the environment on the anatomy of Scots pine (Pinus sylvestris) needles. Water Air Soil Pollut 206:13–22

    Article  CAS  Google Scholar 

  • Maletsika PA, Nanos GD, Stavroulakis GG (2015) Peach leaf responses to soil and cement dust pollution. Environ Sci Pollut Res 22:15952–15960

    Article  CAS  Google Scholar 

  • Mandre M, Tuulmets L (1997) Pigment changes in Norway spruce induced by dust pollution. Water Air Soil Pollut 94:247–258

    CAS  Google Scholar 

  • Misra J, Pandey V, Singh SN, Singh N, Yunus M, Ahmad KJ (1993) Growth responses of Lycopersicon esculentum to cement dust treatment. J Environ Sci Heal A 28:1771–1780

    Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Mutlu S, Atici Ö, Gülen Y (2013) Cement dust pollution induces toxicity or deficiency of some essential elements in wild plants growing around a cement factory. Toxicol Ind Health 29:474–480

    Article  PubMed  Google Scholar 

  • Nanos GD, Ilias FI (2007) Effects of inert dust on olive (Olea europaea L.) leaf physiological parameters. Environ Sci Pollut Res 14:212–214

    Article  CAS  Google Scholar 

  • Peng L, Zeng C, Shi L, Cai H, Xu F (2012) Transcriptional profiling reveals adaptive responses to boron deficiency stress in Arabidopsis. Z Naturforsch C 67:510–524

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan V, Feng Y (2009) Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmos Environ 43:37–50

    Article  CAS  Google Scholar 

  • Reyes JL, Campos F, Wei HUI, Arora R, Yang Y, Karlson DT, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31:1781–1790

    Article  CAS  PubMed  Google Scholar 

  • Samet J, Krewski D (2007) Health effects associated with exposure to ambient air pollution. J Toxicol Environ Health 70:227–242

    Article  CAS  Google Scholar 

  • Sánchez-Soberón F, Rovira J, Mari M, Sierra J, Nadal M, Domingo JL, Schuhmacher M (2015) Main components and human health risks assessment of PM 10, PM 2.5, and PM 1 in two areas influenced by cement plants. Atmos Environ 120:109–116

    Article  Google Scholar 

  • Sasaki K, Christov NK, Tsuda S, Imai R (2013) Identification of a novel LEA protein involved in freezing tolerance in wheat. Plant Cell Physiol 55:136–147

    Article  PubMed  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Schuhmacher M, Domingo JL, Garreta J (2004) Pollutants emitted by a cement plant: health risks for the population living in the neighborhood. Environ Res 95:198–206

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochem 28:1057–1060

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  Google Scholar 

  • Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11:777–788

    Article  CAS  PubMed  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanri O, Murray J, Andraiankaja A, Zhang J-Y, Benedito V, Hofer JMI, Cheng F, Town CD (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallero DA (2008) Fundamentals of air pollution, 4th edn. Academic Press, London

    Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Vuleta A, Jovanović SM, Tucić B (2015) How do plants cope with oxidative stress in nature? A study on the dwarf bearded iris (Iris pumila). Acta Physiol Plant 37:1–12

    Article  CAS  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The Scientific Research Fund, Ministry of Higher Education and Scientific Research (Jordan), Grant number Z,B/1/08/2010. We are grateful to Bayan Al-Momany, Aya Awad, Noor Atiyat and to Arefah Nuaimat for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Abu-Romman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (XLS 1103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Romman, S., Alzubi, J. Transcriptome analysis of Arabidopsis thaliana in response to cement dust. Genes Genom 38, 865–878 (2016). https://doi.org/10.1007/s13258-016-0432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0432-4

Keywords

Navigation