Skip to main content
Log in

Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

An Erratum to this article was published on 11 May 2016

Abstract

The cultivated peanut is important oil crop and salt stress seriously influences its development and yield. Tolerant varieties produced using transgenic techniques can effectively increase peanut plantation area and enhance its yields. However, little is known about how gene expression is regulated by salt stress in peanut. In this study, we screened genes regulated by salt stress in peanut roots using microarray technique. In total, 4828 up-regulated and 3752 down-regulated probe sets were successfully identified in peanut roots subjected to 3 and 48 h of salt stress. Data analysis revealed that different response groups existed between the up and down-regulated probe sets. The main up-regulated biological processes involved in salt stress responses included transcription regulation, stress response, and metabolism and biosynthetic processes. The main down-regulated biological processes included transport processes, photosynthesis and development. The Kyoto encyclopedia of genes and genomes pathway analysis indicated that metabolic pathway, biosynthesis of unsaturated fatty acids and plant–pathogen interaction, were mainly up-regulated in peanut under salt stress. However, photosynthesis and phenylalanine metabolism were mainly down-regulated during salt stress. The function of some probe sets in salt stress regulation was not clarified (e.g., protein functioning in cell cycle regulation and xylem development). Many of the genes we identified lacked functional annotations and their roles in response to salt stress are yet to be elucidated. These results identified some candidate genes as potential markers and showed an overview of the transcription map, which may yield some useful insights into salt-mediated signal transduction pathways in peanut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bánfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnár GZ, Krause KH, Cox JA (2004) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279:18583–18591

    Article  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence—broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol 54:803–817

    Article  CAS  PubMed  Google Scholar 

  • Chen BJ, Wang Y, Hu YL, Wu Q, Lin ZP (2005) Cloning and characterization of a drought inducible MYB gene from Boea crassifolia. Plant Sci 168:493–500

    Article  CAS  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    Article  CAS  PubMed  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681

    Article  PubMed  Google Scholar 

  • Clarke JD, Zhu T (2006) Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems, practical considerations and perspectives. Plant J 45:630–650

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Hancock JT, Coffey MJ, Neill SJ (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett 382:213–217

    Article  CAS  PubMed  Google Scholar 

  • El-Akhal MR, Rincón A, Coba de la Peña T, Lucas MM, El Mourabit N, Barrijal S, Pueyo JJ (2013) Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biol (Stuttg) 15:415–421

    Article  CAS  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelly DB, Cunningham GA, Wrona AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girdhar IK, Bhalodia PK, Misra JB, Girdhar V, Dayal D (2005) Performance of groundnut, Arachis hypogaea L. as influenced by soil salinity and saline water irrigation in black clay soils. J Oilseeds Res 22:183–187

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Guo BZ, Fedorova ND, Chen XP, Wan CH, Wang W, Nierman WC, Bhatnagar D, Yu JJ (2011) Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins 3:737–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta K, Jha B, Agarwal PK (2014) A dehydration-responsive element binding (DREB) transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco. Mar Biotechnol (NY) 16:657–673

    Article  CAS  Google Scholar 

  • Hammad SAR, Shaban KA, Tantawy MF (2010) Studies on salinity tolerance of two peanut cultivars in relation to growth, leaf water content some chemical aspects and yield. J Appl Sci Res 6:1517–1526

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janila P, Rao TN, Kumar AA (1999) Germination and early seedling growth of groundnut (Arachis hypogaea L.) varieties under salt stress. Ann Agric Res 20:180–182

    Google Scholar 

  • Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 13:544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiełbowicz-Matuk A (2012) Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci 185–186:78–85

    Article  PubMed  Google Scholar 

  • Kim HJ (2014) Exploitation of reactive oxygen species by fungi: roles in host–fungus interaction and fungal development. J Microbiol Biotechnol 24:1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnaswamy S, Verma S, Rahman MH, Kav NN (2011) Functional characterization of four APETALA2- family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol 75:107–127

    Article  CAS  PubMed  Google Scholar 

  • Lauter DJ, Meiri A (1990) Peanut pod development in pegging and root zone salinized with sodium chloride. Crop Sci 30:660–664

    Article  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann S, Serrano M, L’Haridon F, Tjamos SE, Metraux JP (2015) Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112:54–62

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Zou HF, Wang HW, Zhang WK, Ma B, Zhang JS, Chen SY (2008) Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res 18:1047–1060

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hong L, Li XY, Yao Y, Hu B, Li L (2011) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotechnol Biochem 75:443–450

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ji X, Zheng L, Nie X, Wang Y (2013) Microarray analysis of transcriptional responses to abscisic acid and salt stress in Arabidopsis thaliana. Int J Mol Sci 14:9979–9998

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33:1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Mensah JK, Akomeah PA, Ikhajiagbe B, Ekpekurede EO (2006) Effects of salinity on germination, growth and yield of five groundnut genotypes. Afr J Biotechnol 5:1973–1979

    CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Muhammad R, He G, Yang G, Javeed H, Yan X (2012) AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evol Bioinform 8:321–355

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nautiyal PC, Ravindra V, Joshi YC (1989) Germination and early seedling growth of some groundnut (Arachis hypogaea L.) cultivars under salt stress. Indian J Plant Physiol 32:251–253

    Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  CAS  PubMed  Google Scholar 

  • Payton P, Kottapalli KR, Rowland D, Faircloth W, Guo BZ, Burow M, Puppala N, Gallo M (2009) Gene expression profiling in peanut using high density oligonucleotide microarrays. BMC Genomics 10:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabu G, Prasad DT (2012) Functional characterization of sugarcane MYB transcription factor gene promoter (PScMYBAS1) in response to abiotic stresses and hormones. Plant Cell Rep 31:661–669

    Article  CAS  PubMed  Google Scholar 

  • Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS One 9:e111152

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin LQ, Li L, Bi C, Zhang YL, Wan SB, Meng JJ, Meng QW, Li XG (2011) Damaging mechanisms of chilling and salt stress to Arachis hypogaea L. leaves. Photosynthetica 49:37–42

    Article  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genomewide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol Plant 127:1–9

    Article  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogaea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR (2014) Heterologous expression of the AtDREB1A gene in transgenic peanut conferred tolerance to drought and salinity stresses. PLoS One 9:e110507

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genomics 284:455–475

    Article  CAS  PubMed  Google Scholar 

  • Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K (1999) Plant response to drought and salt stress: overview. Tanpakushitsu Kakusan Koso 44:2186–2187

    CAS  PubMed  Google Scholar 

  • Shmulevich I, Zhang W (2002) Binary analysis and optimization-based normalization of gene expression data. Bioinformatics 18:555–565

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Prasad R (2009) Salt stress effects growth and cell wall bound enzymes in Arachis hypogaea L. seedlings. Int J Integr Biol 7:118–123

    CAS  Google Scholar 

  • Singh NK, Kumar KR, Kumar D, Shukla P, Kirti PB (2013) Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut. PLoS One 8:e83963

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh N, Mishra A, Jha B (2014) Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene 547:119–125

    Article  CAS  PubMed  Google Scholar 

  • Taffouo VD, Meguekam TL, Ngueleumeni MLP, Pinta IJ, Amougou A (2010) Mineral nutrient status, some quality and morphological characteristic changes in peanut (Arachis hypogaea L.) cultivars under salt stress. Afr J Environ Sci Technol 4:471–479

    Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to transcriptional responses to ionizing radiation. Proc Natl Acad Sci USA 98:5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters DR (2003) Polyamines and plant disease. Phytochemistry 64:97–107

    Article  CAS  PubMed  Google Scholar 

  • Wan L, Wu Y, Huang J, Dai X, Lei Y, Yan L, Jiang H, Zhang J, Varshney RK, Liao B (2014) Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Funct Integr Genomics 14:467–477

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Chen X, Zhu F, Li H, Li L, Yang Q, Chi X, Yu S, Liang X (2013) Characterization of peanut germin-like proteins, AhGLPs in plant development and defense. PLoS One 8:e61722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RK, Cao ZH, Hao YJ (2014) Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiol Plant 150:76–87

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Zhang Y, Han L, Guan Z, Chai T (2008) A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep 27:795–803

    Article  CAS  PubMed  Google Scholar 

  • Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z, Zhang C, Wei Q, Wang Q, Yan H, Li F, Su Z (2011) Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98:47–55

    Article  CAS  PubMed  Google Scholar 

  • Yokawa K, Baluška F (2015) Pectins, ROS homeostasis and UV-B responses in plant roots. Phytochemistry 112:80–83

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Wang CH, Xu Q, Feng Y, Yuan XP, Yu HY, Wang YP, Tang SX, Wei XH (2011) Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genomics 12:372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH, Yao QH, Chen JM (2009) Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep 42:486–492

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao G, Jia J, Liu X, Kong X (2011) Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J Exp Bot 63:203–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang XX, Tang YJ, Ma QB, Yang CY, Mu YH, Suo HC, Luo LH, Nian H (2013) OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS One 8:e83011

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from China Agriculture Research System (CARS-14), the National Natural Science Foundation of China (31000728; 31200211), the Natural Science Fund of Shandong Province (ZR2011CQ036, ZR2012CQ031, ZR2014YL011, ZR2014YL012), the Youth Scientific Research Foundation of Shandong Academy of Agricultural Sciences (the Youth Scientific Research Foundation of Shandong Academy of Agricultural Sciences); the Fund of Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (2014010), Qingdao Civil Science and Technology Project (14-2-3-34-nsh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanlin Yu.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Na Chen and Maowen Su have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Su, M., Chi, X. et al. Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.). Genes Genom 38, 493–507 (2016). https://doi.org/10.1007/s13258-016-0395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0395-5

Keywords

Navigation