Skip to main content
Log in

Transcriptome profiling of the Pacific oyster Crassostrea gigas by Illumina RNA-seq

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

In this study, the whole transcriptome of the Pacific oyster Crassostrea gigas was sequenced using Illumina RNA-seq. De novo assembly was performed with 33,750,764 raw reads using Trinity, which assembled 87,887 contigs. Transdecoder found 41,542 candidate coding contigs which showed homology to other species by BLAST analysis. Functional gene annotation was performed by Gene Ontology and KEGG pathway analyses. Finally, we identified a number of expressed gene pathways for C. gigas representing a useful model animal for gene information-based study such as environmental monitoring, immune-relevant aquaculture, and ecotoxicogenomics studies to uncover molecular mechanisms of stress-triggered sensitivity and physiological response to C. gigas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Alzieu C, Heral M (1984) Ecotoxicological effects of organotin compounds on oyster culture. In: Persoone G, Jaspers E, Claus C (eds) Ecotoxicological testing for the marine environment, vol 2. State University, Belgium, pp 187–195

    Google Scholar 

  • Bourlat SJ, Borja A, Gilbert J, Taylor MI, Davies N, Weisberg SB, Griffith JF, Lettieri T, Field D, Benzie J et al (2013) Genomics in marine monitoring: new opportunities for assessing marine health status. Mar Pollut Bull 74:19–31

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Curole JP, Hedgecock D (2007) Bivalve genomics: complications, challenges, and future perspectives. In: Liu ZJ (ed) Aquaculture genome technologies. Blackwell Publishing, Ames, pp 525–543

    Chapter  Google Scholar 

  • de Lorgeril J, Zenagui R, Rosa RD, Piquemal D, Bachère E (2011) Whole transcriptome profiling of successful immune response to Vibrio infections in the oyster Crassostrea gigas by digital gene expression analysis. PLoS One 6:e23142

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Y, Zhang L, Huang B, Guan X, Li L, Zhang G (2013) Molecular cloning, characterization, and expression of two myeloid differentiation factor 88 (Myd88) in Pacific oyster, Crassostrea gigas. J World Aquac Soc 44:759–774

    Article  CAS  Google Scholar 

  • Feldmeyer B, Wheat CW, Krezdorn N, Rotter B, Pfenninger M (2011) Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. BMC Genomics 12:317

    Article  PubMed  PubMed Central  Google Scholar 

  • Fent K, Sumpter JP (2011) Progress and promises in toxicogenomics in aquatic toxicology: is technical innovation driving scientific innovation? Aquat Toxicol 105:25–39

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization (FAO) (2015) World aquaculture production of fish, crustaceans, molluscs, etc., by principal species in 2013

  • Forrest BM, Keeley NB, Hopkins GA, Webb SC, Clement DM (2009) Bivalve aquaculture inestuaries: review and synthesis of oyster cultivation effects. Aquaculture 298:1–15

    Article  Google Scholar 

  • Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2:a003962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedgecock D, Gaffney PM, Goulletquer P, Guo X, Reece K, Warr GW (2005) The case for sequencing the Pacific oyster genome. J Shellfish Res 24:429–441

    Article  Google Scholar 

  • Ho KK, Leung PT, Ip JC, Qiu JW, Leung KM (2014) De novo transcriptomic profile in the gonadal tissues of the intertidal whelk Reishia clavigera. Mar Pollut Bull 85:499–504

    Article  CAS  PubMed  Google Scholar 

  • Hubert S, Hedgecock D (2004) Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics 168:351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malham SK, Cotter E, O’Keeffe S, Lynch S, Culloty SC, King JW, Latchford JW, Beaumont AR (2009) Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: the influence of temperature and nutrients on health and survival. Aquaculture 287:128–138

    Article  CAS  Google Scholar 

  • Montagnani C, Kappler C, Reichhart JM, Escoubas JM (2004) Cg-Rel, the first Rel/NF-κB homolog characterized in a mollusk, the Pacific oyster Crassostrea gigas. FEBS Lett 561:75–82

    Article  CAS  PubMed  Google Scholar 

  • Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61

    Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponder WF, Colgan DJ, Healy JM, Nützel A, Simone LRL, Strong EE (2008) Caenogastropoda. In: Ponder WF, Lindberg DL (eds) Molluscan phylogeny and evolution. University of California Press, Berkeley, pp 331–383

    Chapter  Google Scholar 

  • Quayle DB, Newkirk GF (1989) Farming bivalve molluscs: methods for study and development. World Aquaculture Society, Baton Rouge

    Google Scholar 

  • Riesgo A, Andrade SC, Sharma PP, Novo M, Pérez-Porro AR, Vahtera V, González VL, Kawauchi GY, Giribet G (2012) Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Front Zool 9:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadamoto H, Takahashi H, Okada T, Kenmoku H, Toyota M, Asakawa Y (2012) De novo sequencing and transcriptome analysis of the central nervous system of mollusc Lymnaea stagnalis by deep RNA sequencing. PLoS One 7:e42546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soletchnik P, Ropert M, Mazurié J, Fleury PG, Le Coz F (2007) Relationships between oyster mortality patterns and environmental data from monitoring databases along the coasts of France. Aquaculture 271:384–400

    Article  Google Scholar 

  • Tirapé A, Bacque C, Brizard R, Vandenbulcke F, Boulo V (2007) Expression of immune-related genes in the oyster Crassostrea gigas during ontogenesis. Dev Comp Immunol 31:859–873

    Article  PubMed  Google Scholar 

  • Tong Y, Zhang Y, Huang J, Xiao S, Zhang Y, Li J, Chen J, Yu Z (2015) Transcriptomics analysis of Crassostrea hongkongensis for the discovery of reproduction-related genes. PLoS One 10:e0134280

    Article  PubMed  PubMed Central  Google Scholar 

  • Yum S, Woo S, Lee A, Won H, Kim J (2014) Hydra, a candidate for an alternative model in environmental genomics. Mol Cell Toxicol 10:339–346

    Article  CAS  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, He X, Yu F, Xiang Z, Li J, Thorpe KL, Yu Z (2013) Characteristic and functional analysis of toll-like receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity. PLoS One 8:e76464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li L, Zhu Y, Zhang G, Guo X (2014) Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica). Mar Biotechnol 16:17–33

    Article  PubMed  Google Scholar 

  • Zhang L, Li L, Guo X, Litman GW, Dishaw LJ, Zhang G (2015) Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep 5:8693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Yu H, Kong L, Liu S, Li Q (2014) Comparative transcriptome analysis of two oysters, Crassostrea gigas and Crassostrea hongkongensis provides insights into adaptation to hypo-osmotic conditions. PLoS One 9:e111915

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant (RP-2015-AG-089) funded to Hyun-Jeong Lim, National Institute of Fisheries Science of the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Sung Rhee or Ik-Young Choi.

Ethics declarations

Compliance of bioethical standard

All the experiments were approved by the animal care and use committee of National Fisheries Research and Development Institute (NFRDI, Pusan, South Korea).

Conflict of Interest

All authors claim no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, HJ., Lim, JS., Lee, JS. et al. Transcriptome profiling of the Pacific oyster Crassostrea gigas by Illumina RNA-seq. Genes Genom 38, 359–365 (2016). https://doi.org/10.1007/s13258-015-0376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0376-0

Keywords

Navigation