Skip to main content
Log in

The genome of Bacillus aryabhattai T61 reveals its adaptation to Tibetan Plateau environment

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Tibetan Plateau is called ‘the Roof of the World’. Organisms survive there have to adapt to the high altitude environment. By shotgun method, we sequenced the genome of Bacillus aryabhattai T61, which inhabits in the soil at the altitude of 4123 m in Shigatse, Tibetan. Further, we explored the genomic basis for its adaptations to the plateau environment. The results showed that B. aryabhattai T61 has evolved an array of ROS defense systems and sporulation system for adaptations to the stresses caused by the plateau strong ultraviolet radiation, extreme oxygen limitation and low temperature. Specifically, B. aryabhattai T61 encodes the ResE–ResD two-component to sense the oxygen limitation and regulates COX15 for aerobic and anaerobic respiration. The two-component system DesK–DesR, which regulates the gene Des initiating the biosynthesis of unsaturated fatty acids, along with 33 temperature-shock proteins contribute to low temperature adaptation. With the comparative analysis, we deduced the novel gene cbiY may be involved in cobalamin biosynthesis. We also found that B. aryabhattai T61 may have novel regulatory mechanisms for sporulation initiation. B. aryabhattai T61 is the first Tibetan strain with high quality genome sequenced. The genome provides a paradigm for understanding the adaptations to the plateau environment in Bacteria kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–1691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L, Olmedo G (2010) Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genom 11:332

    Article  Google Scholar 

  • Biedendieck R, Malten M, Barg H, Bunk B, Martens JH, Deery E, Leech H, Warren MJ, Jahn D (2010) Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium. Microb Biotechnol 3:24–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bigham AW, Wilson MJ, Julian CG, Kiyamu M, Vargas E, Leon-Velarde F, Rivera-Chira M, Rodriquez C, Browne VA, Parra E, Brutsaert TD, Moore LG, Shriver MD (2013) Andean and Tibetan patterns of adaptation to high altitude. Am J Hum Biol 25:190–197

    Article  PubMed  Google Scholar 

  • Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212

    Article  PubMed Central  PubMed  Google Scholar 

  • Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD (1998) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198

    Article  CAS  PubMed  Google Scholar 

  • Budde I, Steil L, Scharf C, Völker U, Bremer E (2006) Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology 152:831–853

    Article  CAS  PubMed  Google Scholar 

  • de Hoon MJ, Eichenberger P, Vitkup D (2010) Hierarchical evolution of the bacterial sporulation network. Curr Biol 20:R735–R745

    Article  PubMed Central  PubMed  Google Scholar 

  • Delcher AL, Bratke K, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demple B, Ding H, Jorgensen M (2002) Escherichia coli SoxR protein: sensor/transducer of oxidative stress and nitric oxide. Methods Enzymol 348:355

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Cui X, Hernández M, Dumont MG (2014) Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing. PLoS ONE 9:e103115

    Article  PubMed Central  PubMed  Google Scholar 

  • Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z (2007) High altitude and oxidative stress. Respir Physiol Neurobiol 158:128–131

    Article  CAS  PubMed  Google Scholar 

  • Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Zhang L, Xuan H, Wan P, Li Y, Yang ZW (2016) Isolation and identification of radiation resistant Bacillus aryabhattai T61 from Tibetan soil. Microbiology China (In press)

  • Fuangthong M, Atichartpongkul S, Mongkolsuk S, Helmann JD (2001) OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J Bacteriol 183:4134–4141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269

    Article  PubMed Central  PubMed  Google Scholar 

  • Graumann P, Wendrich TM, Weber MH, Schröder K, Marahiel MA (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25:741–756

    Article  CAS  PubMed  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acid Res 30:42–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P, Bolotin A, Borchert S, Borriss R et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  PubMed  Google Scholar 

  • Lagesen K, Hallin PF, Rodland E, Staerfeldt HH, Rognes T, Ussery DW (2007) RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acid Res 35:3100–3108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu JD, Liu JM, Linderholm HW, Chen D, Yu Q, Wu D, Haginoya S (2012) Observation and calculation of the solar radiation on the Tibetan Plateau. Energy Conv Manag 57:23–32

    Article  Google Scholar 

  • Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA et al (2014) A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet 46:951–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acid Res 25:955–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Möbius K, Arias-Cartin R, Breckau D, Hännig AL, Riedmann K, Biedendieck R, Schröder S, Becher D, Magalon A, Moser J et al (2010) Heme biosynthesis is coupled to electron transport chains for energy generation. Proc Natl Acad Sci USA 107:10436–10441

    Article  PubMed Central  PubMed  Google Scholar 

  • Mongkolsuk S, Helmann JD (2002) Regulation of inducible peroxide stress responses. Mol Microbiol 45:9–15

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pacifici RE, Davies KJ (1991) Protein, lipid and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontology 37:166–180

    Article  CAS  PubMed  Google Scholar 

  • Paget MS, Buttner MJ (2003) Thiol-based regulatory switches. Annu Rev Genet 37:91–121

    Article  CAS  PubMed  Google Scholar 

  • Panek H, O’Brian MR (2002) A whole genome view of prokaryotic haem biosynthesis. Microbiology 148:2273–2282

    Article  CAS  PubMed  Google Scholar 

  • Petousi N, Robbins PA (2014) Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era. J Appl Physiol 116:875–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phung TH, Jung HI, Park JH, Kim JG, Back K, Jung S (2011) Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol 157:1746–1764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ray S, Datta R, Bhadra P, Mitra B (2012) From space to Earth: Bacillus aryabhattai found in the Indian sub-continent. Biosci Discov 3:138–145

    Google Scholar 

  • Ren B, Duan X, Ding H (2009) Redox control of the DNA damage-inducible protein DinG helicase activity via its iron-sulfur cluster. J Biol Chem 284:4829–4835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robert CE (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2002) Comparative genomics of thiamin biosynthesis in procaryotes new genes and regulatory mechanisms. J Biol Chem 277:48949–48959

    Article  CAS  PubMed  Google Scholar 

  • Scott AI, Roessner CA (2002) Biosynthesis of cobalamin (vitamin B (12)). Biochem Soc Trans 30:613–620

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Sharkova E, Chesnut R, Birkey S, Duggan MF, Sorokin A, Pujic P, Ehrlich SD, Hulett FM (1996) Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J Bacteriol 178:1374–1385

    PubMed Central  CAS  PubMed  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang MS, Li Y, Peng MS, Zhong L, Wang ZJ, Li QY, Tu XL, Dong Y, Zhu CL, Wang L et al (2015) Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Mol Biol Evol 32:1880–1889

    Article  PubMed  Google Scholar 

  • Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. Chap 2, Unit 2.4

  • Zhang X, Hulett FM (2000) ResD signal transduction regulator of aerobic respiration in Bacillus subtilis: ctaA promoter regulation. Mol Microbiol 37:1208–1219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the scientific research project of Beijing Municipal Commission of education, KM201510028010.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhiWei Yang or Ping Wan.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zhang, L., Yu, M. et al. The genome of Bacillus aryabhattai T61 reveals its adaptation to Tibetan Plateau environment. Genes Genom 38, 293–301 (2016). https://doi.org/10.1007/s13258-015-0366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0366-2

Keywords

Navigation