Skip to main content
Log in

Chloroplast markers for detecting rice grain-derived food ingredients in commercial mixed-flour products

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The development of DNA techniques such as quantitative real-time PCR (qRT-PCR) has led to advancements in the field of illegal food product detection. Here, we report a PCR-based method to detect rice grain flour in commercial mixed-flour products. To select the chloroplast genes available for a rice-specific marker, we analyzed chloroplast DNA (cpDNA) polymorphisms in several gene families from five plant species, including rice, adlay, barley, maize, and wheat by using comparative sequence analysis. We found two potential rice-specific marker genes, rpoB and rpoC2, which exhibited relatively high numbers of segregating sites compared to other genes. We designed gene-specific primers for rpoB and rpoC2 on the basis of sequence differences, and identified the appropriate PCR amplification in grain flour samples derived from six Korean rice varieties using the linearity test of the qRT-PCR assay. To test the applicability of these cpDNA markers, we performed a qRT-PCR assay on total DNA obtained from different commercial food products, and successfully detected the rice-specific cpDNA region (rpoB and rpoC2) in several commercial food products that were declared to contain rice. Thus, the reported qRT-PCR assay may prove to be a useful tool for the detection of various rice flours in commercial mixed-flour products such as Sunsik.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cpDNA:

chloroplast DNA

PCR:

Polymerase chain reaction

atp:

ATP synthase

References

  • Branquinho MR, Ferreira RTB, Cardarelli-Leite P (2012) Use of real-time PCR to evaluate two DNA extraction methods from food. Ciencia Tecnol Alime 32:112–118

    Article  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE Guidelines: minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madrinan S, Petersen G, Seberg O, Jorgsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA, Richardson JE, Hollingsworth ML, Barraclough TG, Kelly L, Wilkinson M (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299

    Google Scholar 

  • Clegg MT, Gaut BS, Learn GH Jr, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA 91:6795–6801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de la Cruz S, Lopez-Calleja IM, Alcocer M, Gonzalez I, Martin R, Garcia T (2013) TaqMan real-time PCR assay for detection of traces of Brazil nut (Bertholletia excelsa) in food products. Food Control 33:105–113

    Article  Google Scholar 

  • De la Fuente MA, Juarez M (2005) Authenticity assessment of dairy products. Crit Rev Food Sci 45:563–585

    Article  Google Scholar 

  • Dhieb A, Elleuch A, Kriaa W, Masmoudi F, Drira N (2012) Molecular characterization and in silico analysis of RNA polymerase alpha subunit gene (rpoA) in Date Palm (Phoenix dactylifera L.) cv. Deglet Nour. Genes Genom 34:599–608

    Article  CAS  Google Scholar 

  • Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Gard 88:373–457

  • Herrero B, Vieites JM, Espineira M (2011) Detection of anisakids in fish and seafood products by real-time PCR. Food Control 22:933–939

    Article  CAS  Google Scholar 

  • Hollingsworth PM, Graham SW, Little DP (2011) Choosing and Using a Plant DNA Barcode. PLoS ONE 6:e19254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jonker KM, Tilburg JJHC, Hagele GH, De Boer E (2008) Species identification in meat products using real-time PCR. Food Addit Contam 25:527–533

    Article  CAS  Google Scholar 

  • Koh E, Jang KH, Surh J (2014) Improvement of Physicochemical Properties of Cereal Based Ready-to-eat Sunsik Using Fermentation with Bionuruk and Bifidobacterium longum. Food Sci Biotechnol 23:1977–1985

    Article  CAS  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Zhang B, Huang GW, Kang GP, Liang MZ, Chen LB (2012) Chloroplast DNA polymorphism and evolutional relationships between Asian cultivated rice (Oryza sativa) and its wild relatives (O. rufipogon). Genet Mol Res 11:4418–4431

    Article  CAS  PubMed  Google Scholar 

  • Lockley A, Bardsley R (2000) DNA-based methods for food authentication. Trends Food Sci Technol 11:67–77

    Article  CAS  Google Scholar 

  • Lopez-Calleja IM, de la Cruz S, Pegels N, Gonzalez I, Martin R, Garcia T (2014) Sensitive and specific detection of almond (Prunus dulcis) in commercial food products by real-time PCR. Lwt-Food Sci Technol 56:31–39

    Article  CAS  Google Scholar 

  • McFadden GI (2001) Chloroplast origin and integration. Plant Physiol 125:50–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newmaster SG, Fazekas AJ, Ragupathy S (2006) DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Can J Bot 84:335–341

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Champman BA (2004) Ancient polyploidization predating dviergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Scarafoni A, Ronchi A, Duranti M (2009) A real-time PCR method for the detection and quantification of lupin flour in wheat flour-based matrices. Food Chem 115:1088–1093

    Article  CAS  Google Scholar 

  • Seberg O, Petersen G (2009) How many loci does it take to DNA barcode a crocus? PLoS ONE 4:e4598

    Article  PubMed Central  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  PubMed  Google Scholar 

  • Soderlund C, Bomhoff M, Nelson WM (2011) SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res 39:e68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teletchea F, Maudet C, Hanni C (2005) Food and forensic molecular identification: update and challenges. Trends Biotechnol 23:359–366

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann K, Mannhalter JW (1996) Technical aspects of quantitative competitive PCR. Biotechniques 21:268–272

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (14162MFDS971) from the Korean Ministry of Food and Drug Safety in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Seong Jang.

Ethics declarations

Conflict of interet

The authors declare no conflict of interest

Additional information

Sun-Goo Hwang and Ju-Hee Kim have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pptx 1450 kb)

Supplementary material 2 (docx 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, SG., Kim, JH., Moon, JC. et al. Chloroplast markers for detecting rice grain-derived food ingredients in commercial mixed-flour products. Genes Genom 37, 1027–1034 (2015). https://doi.org/10.1007/s13258-015-0335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0335-9

Keywords

Navigation