Skip to main content
Log in

Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Lagerstroemia indica is a popular woody ornamental plant throughout the world. However, relatively little is known about the molecular processes regulating leaf color in L. indica compared with other ornamental plants. Although yellow leaf mutants from various organisms have been well characterized, L. indica yellow leaf mutant has not yet been reported. In this study, a L. indica yellow leaf mutant, named YL03, was characterized and its leaf transcriptome was sequenced. A total of 30,712,752 reads were generated and assembled de novo into 45,308 unigenes with an average length of 987.51 bp. Among these unigenes, 21,339 (47.10 %) were identified as putative homologs of annotated sequences in public databases. A total of 79 unigenes involved in chlorophyll biosynthesis and degradation, photosynthesis and chloroplast development were identified. The expression levels of those genes were detected using quantitative real-time PCR in this study. Among those genes, 11 unigenes showed highly significant difference in the mutant compared to wild type plants. Conclusively, the leaf color formation is greatly affected by the activity of chloroplast development and chlorophyll metabolism. And the possible formation pathway of yellow leaf mutant is deduced based on our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allahverdiyeva Y, Mamedov F, Suorsa M, Styring S, Vass I, Aro EM (2007) Insights into the function of PsbR protein in Arabidopsis thaliana. BBA-Bioenerg 1767:677–685

    Article  CAS  Google Scholar 

  • Anderson JM, Melis A (1983) Localization of different photosystems in separate regions of chloroplast membranes. Proc Natl Acad Sci USA 80:745–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Battersby AR, Fookes CJR, Gustafson-Potter KE, Matcham GWJ, McDonald E (1979) Proof by synthesis that unrearranged hydroxymethylbilane is the product from deaminase and the substrate for cosynthetase in the biosynthesis of uroporphyrinogen-III. J Chem Soc Chem Commun 24:1155–1158

    Article  Google Scholar 

  • Brickell C (1996) Encyclopedia of garden plants. Macmillan Press, New York, pp 250–252

    Google Scholar 

  • Chen Z, Xue C, Zhu S, Zhou F, Xuefeng BL, Liu G, Chen L (2005) GoPipe: streamlined gene ontology annotation for batch anonymous sequences with statistics. Prog Biochem Biophys 32:187–191

    CAS  Google Scholar 

  • Chitnis PR (1996) Photosystem I. Plant Physiol 111:661–669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chitnis PR (2001) Photosystem I: function and physiology. Annu Rev Plant Biol 52:593–626

    Article  CAS  Google Scholar 

  • Clark SM, Vaitheeswaran V, Ambrose SJ, Purves RW, Page JE (2013) Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus). BMC Plant Biol 13:12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eichacker L, Paulsen H, Rüdiger W (1992) Synthesis of chlorophyll a regulates translation of chlorophyll a apoproteins P700, CP47, CP43 and D2 in barley etioplasts. Eur J Biochem 205:17–24

    Article  CAS  PubMed  Google Scholar 

  • Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31:713–727

    Article  CAS  PubMed  Google Scholar 

  • Fromme P, Melkozernov A, Jordan P, Krauss N (2003) Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett 555:40–44

    Article  CAS  PubMed  Google Scholar 

  • Fu N, Wang Q, Shen HL (2013) De novo assembly, gene annotation and marker development using Illumina paired-end transcriptome sequences in celery (Apium graveolens L.). PLoS One 8:e57686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ge G, Xiao P, Zhang Y, Yang L (2011) The first insight into the tissue specific Taxus transcriptome via Illumina second generation sequencing. PLoS One 6:e21220

    Article  PubMed Central  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holden H (1961) The breakdown of chlorophyll by chlorophyllase. Biochem J 78:359–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A (2009) Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J Biol Chem 284:17449–17456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu HZ, Zhang R, Shang AQ, Zhao LJ, Lu ZM (2007) Response of pigment content of golden-leaf plants to light intensity. Acta Hortic Sin 34:717–722 (In Chinese)

    CAS  Google Scholar 

  • Jia T, Ito H, Tanaka A (2015) The chlorophyll b reductase NOL participates in regulating the antenna size of photosystem II in Arabidopsis thaliana. Procedia Chem 14:422–427

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kato Y, Sun X, Zhang L, Sakamoto W (2012) Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis. Plant Physiol 159:1428–1439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim EH, Li XP, Razeghifard R, Anderson JM, Niyogi KK, Pogson BJ, Chow WS (2009) The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: a study using two chlorophyll b-less mutants. BBA-Bioenerg 1787:973–984

    Article  CAS  Google Scholar 

  • Kiss É, Kós PB, Chen M, Vass I (2012) A unique regulation of the expression of the psbA, psbD, and psbE genes, encoding the D1, D2 and cytochrome b559 subunits of the Photosystem II complex in the chlorophyll d containing cyanobacterium Acaryochloris marina. BBA-Bioenerg 1817:1083–1094

    Article  CAS  Google Scholar 

  • Klodawska K, Kis M, Malec P, Kovacs L, Gombos Z, Strzalka K (2013) Morphological and physiological characterization of the ΔpsaL mutant of cyanobacterium synechocystis PCC6803. Biotechnologia 94:317–335

    Google Scholar 

  • Kumar AM, Söll D (2000) Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol 122:49–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H (2000) Principle and technology of plant physiological and biochemical experiments. Higher Education Press, Beijing, pp 134–138

    Google Scholar 

  • Liang Y, Chen SY, Liu GS (2011) Application of next generation sequencing techniques in plant transcriptome. Hereditas 33:1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Meier S, Tzfadia O, Vallabhaneni R, Gehring C, Wurtzel ET (2011) A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Syst Biol 5:77

    Article  PubMed Central  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Millar AJ, Kay S (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Min W, Ping S, Ren XX, Zhang QX (2008) Recent advances in Lagerstroemia indica resourses and breeding. Shandong For Sci Technol 175:66–68 (In Chinese)

    Google Scholar 

  • Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA (2010) De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genom 11:681

    Article  CAS  Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paulsen H, Rümler U, Rüdiger W (1990) Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta 181:204–211

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez MT, Gonzélez MP, Linares JM (1987) Degradation of chlorophyll and chlorophyllase activity in senescing barley leaves. J Plant Physiol 129:369–374

    Article  Google Scholar 

  • Seo TS, Bai X, Kim DH, Meng Q, Shi S, Ruparel H, Li ZM, Turro NJ, Ju J (2005) Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. Proc Natl Acad Sci USA 102:5926–5931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi LX, Hall M, Funk C, Schröder WP (2012) Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. BBA-Bioenerg 1817:13–25

    Article  CAS  Google Scholar 

  • Staehelin LA, DeWit M (1984) Correlation of structure and function of chloroplast membranes at the supramolecular level. J Cell Biochem 24:261–269

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Curr Opin Plant Biol 9:248–255

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genom 11:726

    Article  CAS  Google Scholar 

  • Wang R, Xu S, Jiang Y, Jiang J, Li X, Liang L, He J, Peng F, Xia B (2013a) De novo sequence assembly and characterization of Lycoris aurea transcriptome using GS FLX titanium platform of 454 pyrosequencing. PLoS One 8:e60449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang SA, Wang P, Zhang ZY, Yang RT, Ma LL, Li Y (2013b) Study on Propagation by Cutting of Lagerstroemia indica L’.Jinwei’. North Hortic 11:72–75 (In Chinese)

    CAS  Google Scholar 

  • Waters MT, Moylan EC, Langdale JA (2008) GLK transcription factors regulate chloroplast development in a cell-autonomous manner. Plant J 56:432–444

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Sun N, Wang L, Jiang L, Wang C, Zhai H, Wan J (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Y, Chen X, Xu B, Li Y, Ma Y, Wang G (2015) Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate’. Front Plant Sci 6:139

    PubMed Central  PubMed  Google Scholar 

  • Zhang QX (1991) Studies on cultivars of crape-myrtle (Lagerstroemia indica) and their uses in urban greening. J Beijing For Univ 18:57–66 (In Chinese)

    Google Scholar 

  • Zhang XM, Zhao L, Larson-Rabin Z, Li DZ, Guo ZH (2012) De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 7:e42082

  • Zhang ZY, Wang P, Li Y, Ma LL, Li LF, Yang RT, Ma YZ, Wang SA, Wang Q (2014) Global transcriptome analysis and identification of the flowering regulatory genes expressed in leaves of Lagerstroemia indica. DNA Cell Biol 33:680–688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Transformational fund of agricultural scientific and technological achievements, Ministry of Science and Technology (2013GB2C100185), Public service platform of science and technology of Jiangsu province (BM2012058), Natural science funds of Jiangsu province (BK2012377), Agricultural independent innovation funds of Jiangsu province (CX[14]2032) and Modern agriculture project of Nanjing (201201021).

Authors’ contributions

The study was conceived by Peng Wang. The plant material preparation was carried out by Shu’an Wang, Lingling Ma and Linfang Li. Data analysis and bioinformatics analysis was finished by Rutong Yang, Yuzhu Ma and Qing Wang. Manuscript was written by Ya Li and Zhenyu Zhang. All authors had read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Ya Li and Zhenyu Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 89 kb)Table S1: The molecular primers designed for quantitative real-time PCR

13258_2015_317_MOESM2_ESM.xls

Supplementary material 2 (XLS 31 kb)Table S2: The candidate uingenes involved in chlorophyll biosynthesis and degradation

Supplementary material 3 (XLS 27 kb)Table S3: The candidate uingenes belonged to LHC gene family

Supplementary material 4 (XLS 33 kb)Table S4: The candidate uingenes involved in photosynthesis

Supplementary material 5 (XLS 26 kb)Table S5: The candidate uingenes involved in chlorophyll development

13258_2015_317_MOESM6_ESM.xls

Supplementary material 6 (XLS 28 kb)Table S6: The summary of 11 unigenes showing significant difference between mutant type and wild type by qRT-PCR

13258_2015_317_MOESM7_ESM.doc

Supplementary material 7 (DOC 33 kb)Table S7: The qRT-PCR analysis of 11 candidate uingenes in the mutant from May 3 to August 2

13258_2015_317_MOESM8_ESM.tif

Supplementary material 8 (TIFF 367 kb)Figure S1 - COG functional classifications of mutant type. In total, 11,512 (25.41 %) unigenes were assigned to 25 COG classifications. A: signal transduction mechanisms; B: general function prediction only; C: posttranslational modification, protein turnover, chaperones; D: translation, ribosomal structure and biogenesis; E: Intracellular trafficking, secretion, and vesicular transport; F: Carbohydrate transport and metabolism; G: function unknown; H: energy production and conversion; I: transcription; J: secondary metabolites biosynthesis, transport and catabolism; K: amino acid transport and metabolism; L: lipid transport and metabolism; M: RNA processing and modification; N: cytoskeleton; O: inorganic ion transport and metabolism; P: replication, recombination and repair; Q: cell cycle control, cell division, chromosome partitioning; R: cell wall/membrane/envelope biogenesis; S: coenzyme transport and metabolism; T: nucleotide transport and metabolism; U: chromatin structure and dynamics; V: defense mechanisms; W:nuclear structure; X: extracellular structures; Y: cell motility

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Z., Wang, P. et al. Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. Genes Genom 37, 851–863 (2015). https://doi.org/10.1007/s13258-015-0317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0317-y

Keywords

Navigation