Skip to main content
Log in

Microsatellite analysis of genetic variation and structure in Korean and exotic dog breeds

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The domestic dog (Canis familiaris) is one of the best models for investigating patterns of genetic diversity within a subpopulation because they were the first animals to be domesticated and have since been bred to develop a huge range of phenotypes. More than 400 recognized breeds have been developed, and many display inbreeding depression due to selective breeding. Here, we first analyzed the genetic variations in three breeds of dog, namely, Jindo, Poongsan (both Korean breeds), and Labrador Retriever, by using nine microsatellite markers. The highest level of genetic diversity was detected in Jindo, followed by Poongsan and Labrador Retriever. Negative FIS values were found for all three breeds at some microsatellite loci. Next, we compared genetic variation in Korean dog breeds and exotic dog breeds using data produced here and in a previous study. We found that the Korean group had higher value of genetic variation than the exotic group. Our study demonstrated that the microsatellite markers used here are suitable for the analysis of genetic variation and differentiation in dog breeds. The information obtained here will be of value for ensuring genetic diversity and excellence in the different dog breeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Botstein D, White RL, Skalnick MH, Davies RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  CAS  PubMed  Google Scholar 

  • Cho GJ (2005) Microsatellite polymorphism and genetic relationship in dog breeds in Korea. Asian Aust J Anim Sci 18:1071–1074

    Article  CAS  Google Scholar 

  • Conner JK (2003) Artificial selection: a powerful tool for ecologists. Ecology 84:1650–1660

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • DeNise S, Johnston E, Halverson J, Marshall K, Rosenfeld D, McKenna S, Sharp T, Edwards J (2004) Power of exclusion for parentage verification and probability of match for identity in American Kennel Club breeds using 17 canine microsatellite markers. Anim Genet 35:14–17

    Article  CAS  PubMed  Google Scholar 

  • Dieringer D, Schlotterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resourvol 4:359–361

    Article  Google Scholar 

  • Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the sofrware STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Jarne P, Lagoda PJ (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:239–424

    Article  Google Scholar 

  • Jeong H, Choi BH, Eo JW, Kwon YJ, Lee HE, Choi YR, Gim JA, Kim TH, Seong HH, Lee DH et al (2014) Statistical analysis and genetic diversity of three dog breeds using simple sequence repeats. Genes Genom 36:883–889

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kim YK, Lee SS, Oh SI, Kim JS, Suh EH, Houpt KA, Lee HC, Lee HJ, Yeon SC (2010) Behavioral reactivity of Jindo dogs socialized at an early age compared with non-socialized dogs. J Vet Med Sci 72:405–410

    Article  PubMed  Google Scholar 

  • Kwon YJ, Choi BH, Eo JW, Kim CR, Jung YD, Lee JR, Cho YR, Gim JA, Lee DH, Ha JH et al (2014) Genetic structure and variability of the working dog inferred from microsatellite marker analysis. Genes Genom 36:197–203

    Article  CAS  Google Scholar 

  • Leberg PL (1992) Effects of population bottlenecks on genetic diversity on population growth and size. Conserv Biol 7:194–199

    Article  Google Scholar 

  • Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  CAS  PubMed  Google Scholar 

  • Lee CG, Lee JI, Lee CY, Sun SS (2000) A review of the Jindo, Korean native dog. Asian Aust J Anim Sci 13:381–389

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:284–291

    Article  Google Scholar 

  • Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76:379–390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neigel JE (1996) Estimation of effective population size and migration parameters from genetic data. In: Smith TB, Wayne BK (eds) Molecular genetic approaches in conservation. Oxford University Press, Oxford, pp 329–346

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371

    Article  CAS  PubMed  Google Scholar 

  • Schlotterer C (2004) The evolution of molecular markers-just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  Google Scholar 

  • Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9:1517–1528

    Article  CAS  PubMed  Google Scholar 

  • Waybne RK, Ostrander EA (1999) Origin, genetic diversity, and genome structure of the domestic dog. BioEssays 21:247–257

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilsson E, Sundgren PE (1997) The use of a behaviour test for the selection of dogs for service and breeding, I: method of testing and evaluating test results in the adult dog, demands on different kinds of service dogs, sex and breed differences. Appl Anim Behav Sci 53:273–295

    Article  Google Scholar 

  • Wright S (1978) Evoulution and the genetics of populations, vol IV: variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Zajc I, Sampson J (1999) Utility of canine microsatellite in revealing the relationships of pure bred dogs. J Hered 90:104–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by funding provided by the AGENDA project (Project No. PJ009254) from the National Institute of Animal Science, Rural Development Administration (RDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Ethics declarations

Ethical Standard

All of the animal experiments and procedures described here were performed with the permission of the animal welfare committee of the National Institute of Animal Science, Republic of Korea.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H., Choi, BH., Lee, HE. et al. Microsatellite analysis of genetic variation and structure in Korean and exotic dog breeds. Genes Genom 37, 819–827 (2015). https://doi.org/10.1007/s13258-015-0313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0313-2

Keywords

Navigation