Skip to main content
Log in

Transcriptional profile of processing machinery of 3′ end of mRNA in Trichomonas vaginalis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Trichomonas vaginalis is the causative agent of trichomonosis, a sexually transmitted disease (STD) that affects over 180 million people worldwide. This parasite is capable to infect the urogenital tract of women and men, both microenvironments might affect the expression of key genes that may be involved in the parasite pathogenesis. The processing of 3′ end of mRNA promotes mRNA stability in many eukaryotes, however in T. vaginalis this molecular machinery is under research. By means of an in silico analysis we identified putative proteins of the 3′ end mRNA processing machinery of T. vaginalis, and by RT-PCR assays we evaluated the expression of eight of these genes in a female and male T. vaginalis isolates. According to the in silico analysis, the T. vaginalis 3′ end mRNA processing machinery, comprises a similar complex and protein factors that those described in Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and Entamoeba histolytica. The complex contains several sub-complexes, including cleavage and polyadenylation specificity factor (CPSF), cleavage stimulation factor (CstF), cleavage factor I (CFIm) and cleavage factor II (CFIIm). We demonstrated that genes tvpsf2p, tvcfi25, tvcpsf160, tvcpsf73, tvfip1, tvpap1, tvpc4 and tvpabp are expressed in male or female T. vaginalis isolates. Besides we identify two different isoforms of TvPC4. T. vaginalis genome contains most of genes encoding for 3′ end mRNA processing, which may be transcriptionally active and could be involved in the capping, splicing, cleavage and polyadenylation of mRNAs in this parasite. Further studies are necessary to elucidate the biological meaning of our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2DE:

Double dimensional gel electrophoresis

WB:

Western blot

2DE-WB:

Double dimensional gel electrophoresis Western blot assay

References

  • Alvarez-Sanchez ME, Avila-Gonzalez L, Becerril-Garcıa C, Fattel-Facenda LV, Ortega-Lopez J, Arroyo R (2000) A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity. Microb Pathog 28:193–202

    Article  CAS  PubMed  Google Scholar 

  • Batta K, Yokokawa M, Takeyasu K, Kundu TK (2009) Human transcriptional coactivator PC4 stimulates DNA end joining and activates DSB repair activity. J Mol Biol 385:788–799

    Article  CAS  PubMed  Google Scholar 

  • Bernstein J, Toth EA (2012) Yeast nuclear RNA processing. World J Biol Chem 3:7–26

    PubMed Central  PubMed  Google Scholar 

  • Bethke LL, Zilversmith M, Nielsen K, Daily J, Volkman SK, Ndiaye D, Lozovsky ER, Hartl DL, Wirth DF (2006) Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. Mol Biochem Parasitol 150:10–24

    Article  CAS  PubMed  Google Scholar 

  • Calvo O, Manley JL (2001) Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination. Mol Cell 7:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S et al (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 31:207–212

    Article  Google Scholar 

  • Dantonel J-C, Murthy KGK, Manley JL, Tora L (1997) Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 25:399–402

    Google Scholar 

  • de Vries H, Rüegsegger U, Hübner W, Friedlein A, Langen H, Keller W (2000) Human pre-mRNA cleavage factor IIm contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J 19:5895–5904

    Article  PubMed Central  PubMed  Google Scholar 

  • Espinosa N, Hernández R, López-Griego L, López-Villaseñor I (2002) Separable putative polyadenylation and cleavage motifs in Trichomonas vaginalis mRNAs. Gene 289:81–86

    Article  CAS  PubMed  Google Scholar 

  • Ford LP, Bagga PS, Wilusz J (1997) The poly(A) tail inhibits the assembly of a 3′-to-5′ exonuclease in an in vitro RNA stability system. Mol Cell Biol 17:398–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frith M, Hamada M, Horton P (2010) Parameters for accurate genome alignment. BMC Bioinformatics 11:80

    Article  PubMed Central  PubMed  Google Scholar 

  • Helmling S, Zhelkovsky A, Moore CL (2001) Fip1 regulates the activity of Poly(A) Polymerase through multiple interactions. Mol Cell Biol 21:2026–2037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt AG (1994) Messenger RNA3′ end formation in Plants. Annu Rev Plant Physiol Plant Mol Biol 45:47–60

    Article  CAS  Google Scholar 

  • Kaufmann I, Martin G, Friedlein A, Langen H, Keller W (2004) Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 23:616–626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kerwitz Y, Kühn U, Lilie H, Knoth A, Scheuermann T, Friedrich H, Schwarz E, Wahle E et al (2003) Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA. EMBO J 22:3705–3714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leon-Sicairos CR, Leon-Felix J, Arroyo R (2004) tvcp12: a novel Trichomonas vaginalis cathepsin L-like cysteine proteinase-encoding gene. Microbiol 150:1131–1138

    Article  CAS  Google Scholar 

  • Liston DR, Johnson PJ (1999) Analysis of a ubiquitous promoter element in a primitive eukaryote: early evolution of the initiator element. Mol Cell Biol 19:2380–2388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liston DR, Lau AOT, Ortiz D, Smale ST, Johnson PJ (2001) Initiator recognition in a primitive eukaryote: IBP39, an initiator-bnding protein from Trichomonas vaginalis. Mol Cell Biol 21:7872–7882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Camarillo C, Orozco E, Marchat LA (2005) Entamoeba histolytica: comparative genomics of the pre-mRNA 3′ end processing machinery. Exp Parasitol 110:184–190

    Article  PubMed  Google Scholar 

  • López-Camarillo C, Hernández de la Cruz ON, Vivas JG, Retana JF, Valdez MP, Rosas IL, Alvarez-Sánchez E, Marchat LA (2010) Recent insights in pre-mRNA 3′-end processing signals and poteins in the protozoan parasite Entamoeba histolytica. Infect Disord Drug Targets 10:258–265

    Article  PubMed  Google Scholar 

  • Mandel C, Bai Y, Tong L (2008) Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 65:1099–1122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin G, Keller W, Doublié S (2000) Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP. EMBO J 19:4193–4203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357–361

    Article  CAS  PubMed  Google Scholar 

  • Ohnacker M, Barabino SM, Preker PJ, Keller W (2000) The WD-repeat protein pfs2p bridges two essential factors within the yeast pre-mRNA 3′-end-processing complex. EMBO J 19:37–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pezet-Valdez M, Fernández-Retana J, Ospina-Villa JD, Ramírez-Moreno ME, Orozco E, Charcas-López S, Soto-Sánchez J, Mendoza-Hernández G, López-Casamicha M, López-Camarillo C et al (2013) The 25 kDa subunit of cleavage factor im is a RNA-binding protein that interacts with the Poly(A) polymerase in Entamoeba histolytica. PLoS ONE 8:e67977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Proudfoot N (2004) New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr Opin Cell Biol 16:272–278

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108:501–512

    Article  CAS  PubMed  Google Scholar 

  • Quintas-Granados LI, Villalpando JL, Vázquez-Carrillo LI, Arroyo R, Mendoza-Hernández G, Álvarez-Sánchez ME (2013) TvMP50 is an immunogenic metalloproteinase during male trichomoniasis. Mol Cell Proteomics 12:1953–1964

    Article  PubMed Central  PubMed  Google Scholar 

  • Schumacher MA, Lau AOT, Johnson PJ (2003) Structural basis of core promoter recognition in a primitive eukaryote. Cell 115:413–424

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR 3rd, Frank J, Manley JL (2009) Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33:365–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaňáčová Š, Yan W, Carlton JM, Johnson PJ (2005) Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. Proc Natl Acad Sci USA 102:4430–4435

    Article  PubMed Central  PubMed  Google Scholar 

  • Vazquez-Carrillo LI, Quintas-Granados LI, Arroyo R, Mendoza-Hernández G, González-Robles A, Carvajal-Gamez BI, Alvarez-Sánchez ME (2011) The effect of Zn2+ on prostatic cell cytotoxicity caused by Trichomonas vaginalis. J of Integrated Omics 1:198–210

    Google Scholar 

  • Vinciguerra P, Stutz F (2004) mRNA export: an assembly line from genes to nuclear pores. Curr Opin Cell Biol 16:285–292

    Article  CAS  PubMed  Google Scholar 

  • Wickens M, Anderson P, Jackson RJ (1997) Life and death in the cytoplasm: messages from the 3′ end. Curr Opin Genet Dev 7:220–232

    Article  CAS  PubMed  Google Scholar 

  • Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2:237–246

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Ye X, Quinn Li Q (2004) AtCPSF73-II gene encoding an Arabidopsis homolog of CPSF 73 kDa subunit is critical for early embryo development. Gene 324:35–45

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in Eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Universidad Autónoma de la Ciudad de México (UACM) and by grants from ICyTDF 221/2011, 18/2012 and CONACyT 83808. MADMS was scholarship recipient from CONACYT (230118) and ICyTDF (179/2011) and AVO was supported by ICyTDF (ICyTDF/SRI/70/2011).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elizbeth Alvarez-Sánchez.

Additional information

Miguel Ángel Del-Moral-Stevenel and Alma Villalobos-Osnaya had equal contribution to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del-Moral-Stevenel, M.Á., Villalobos-Osnaya, A., López-Casamichana, M. et al. Transcriptional profile of processing machinery of 3′ end of mRNA in Trichomonas vaginalis . Genes Genom 37, 399–408 (2015). https://doi.org/10.1007/s13258-015-0268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0268-3

Keywords

Navigation