Skip to main content
Log in

Distinct expression patterns and functions of the pygopus genes in amphioxus and zebrafish early embryogenesis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The Wnt/β-catenin transcriptional activation complex requires the adapter protein Pygopus (Pygo), which links the basal transcription machine to β-catenin to regulate the transcription of target genes. Previous studies revealed that the Pygo genes were broadly involved in the embryonic development of Drosophila, Xenopus and mouse, however, their functions in the embryonic development of amphioxus and zebrafish remain to be investigated. Here, we cloned and characterized one Pygo gene from amphioxus Branchiostoma belcheri (BbPygo) and two from zebrafish Danio rerio (DrPygo1 and DrPygo2). The spatial–temporal expression profiles showed that all these genes were maternally expressed. BbPygo expression was distributed ubiquitously in the amphioxus embryos before the gastrula stage and became restricted in the pharyngeal region in late stages. Similar to BbPygo, DrPygo2 was also expressed throughout whole embryos before the early gastrula stage, but limited in the pharyngeal region and central nervous system (CNS) in subsequent developing stages. Further knockdown of the DrPygo2 resulted in developmental defects of the body axis, CNS and cartilage segments in zebrafish. In contrast, the expression signal of the DrPygo1 gene was not detectable using the in situ hybridization method, which is consistent with its extremely low expression level detected by RT-qPCR. The expression patterns and function investigations revealed in this study suggest that the three Pygo genes probably function differentially though all of them show a conserved maternal expression pattern during the early embryonic stages of amphioxus and zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J (2002) Pygopus encodes a nuclear protein essential for wingless/Wnt signaling. Development 129:4089–4101

    CAS  PubMed  Google Scholar 

  • Bertrand S, Escriva H (2011) Evolutionary crossroads in developmental biology: amphioxus. Development 138:4819–4830

    Article  CAS  PubMed  Google Scholar 

  • Broadbent J, Read EM (1999) Whole-mount in situ hybridization of Xenopus and Zebrafish embryos. Methods Mol Biol 127:57–67

    Article  CAS  PubMed  Google Scholar 

  • Carrera I, Janody F, Leeds N, Duveau F, Treisman JE (2008) Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc Natl Acad Sci USA 105:6644–6649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

  • Chan TM, Longabaugh W, Bolouri H, Chen HL, Tseng WF, Chao CH, Jang TH, Lin YI, Hung SC, Wang HD, Yuh CH (2009) Developmental gene regulatory networks in the zebrafish embryo. BBA 1789:279–298

    CAS  PubMed  Google Scholar 

  • Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:1700–1708

    Article  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  CAS  PubMed  Google Scholar 

  • Feijoo CG, Onate MG, Milla LA, Palma VA (2011) Sonic hedgehog (Shh)-Gli signaling controls neural progenitor cell division in the developing tectum in zebrafish. Eur J Neurosci 33:589–598

    Article  PubMed  Google Scholar 

  • Garcia Fernandez J, Jimenez Delgado S, Pascual-Anaya J, Maeso I, Irimia M, Minguillon C, Benito-Gutierrez E, Gardenyes J, Bertrand S, D’Aniello S (2009) From the American to the European amphioxus: towards experimental Evo-Devo at the origin of chordates. Int J Dev Biol 53:1359–1366

    Article  PubMed  Google Scholar 

  • Hoffmans R, Städeli R, Basler K (2005) Pygopus and legless provide essential transcriptional coactivator functions to Armadillo/β-catenin. Curr Biol 15:1207–1211

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ, Laudet V, Schubert M (2004) The chordate amphioxus: an emerging model organism for developmental biology. Cell Mol Life Sci 61:2290–2308

    Article  CAS  PubMed  Google Scholar 

  • Jessen S, Gu B, Dai X (2008) Pygopus and the Wnt signaling pathway: a diverse set of connections. BioEssays 30:448–456

    Article  CAS  PubMed  Google Scholar 

  • Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18  

  • Kennedy MW, Cha SW, Tadjuidje E, Andrews PG, Heasman J, Kao KR (2010) A co-dependent requirement of xBcl9 and Pygopus for embryonic body axis development in Xenopus. Dev Dyn 239:271–283

    CAS  PubMed  Google Scholar 

  • Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Züllig S, Basler K (2002) Wnt/Wingless signaling requires BCL9/legless-mediated recruitment of Pygopus to the nuclear β-catenin-TCF complex. Cell 109:47–60

    Article  CAS  PubMed  Google Scholar 

  • Lake BB, Kao KR (2003) Pygopus is required for embryonic brain patterning in Xenopus. Dev Biol 261:132–148

    Article  CAS  PubMed  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320  

  • Li B, Mackay DR, Ma J, Dai X (2004) Cloning and developmental expression of mouse pygopus 2, a putative Wnt signaling component. Genomics 84:398–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Rheaume C, Teng A, Bilanchone V, Munguia JE, Hu M, Jessen S, Piccolo S, Waterman ML, Dai X (2007) Developmental phenotypes and reduced Wnt signaling in mice deficient for pygopus 2. Genesis 45:318–325

    Article  CAS  PubMed  Google Scholar 

  • Li G, Yang X, Shu ZH, Chen XY, Wang YQ (2012) Consecutive spawnings of Chinese amphioxus, Branchiostoma belcheri, in captivity. PLoS One 7(12):e50838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li G, Shu ZH, Wang YQ (2013) Year-round reproduction and induced spawning of Chinese amphioxus, Branchiostoma belcheri, in laboratory. PLoS One 8(9):e75461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • McCarroll MN, Lewis ZR, Culbertson MD, Martin BL, Kimelman D, Nechiporuk AV (2012) Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation. Development 139:2740–2750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parker DS, Jemison J, Cadigan KM (2002) Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 129:2565–2576

    CAS  PubMed  Google Scholar 

  • Rao TP, Kühl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106:1798–1806

    Article  CAS  PubMed  Google Scholar 

  • Sanchez R, Zhou MM (2011) The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36:364–372

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schier AF, Talbot WS (2005) Molecular genetics of axis formation in zebrafish. Annu Rev Genet 39:561–613

    Article  CAS  PubMed  Google Scholar 

  • Schwab KR, Patterson LT, Hartman HA, Song N, Lang RA, Lin X, Potter SS (2007) Pygo1 and Pygo2 roles in Wnt signaling in mammalian kidney development. BMC Biol 5:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M (2002) A new nuclear component of the Wnt signalling pathway. Nat Cell Biol 4:367–373

    Article  CAS  PubMed  Google Scholar 

  • Westerfield M (1995) The zebrafish book, 3rd edn. University of Oregon Press, Eugene, Oregon

    Google Scholar 

  • Yu JK, Holland LZ (2009) Amphioxus whole-mount in situ hybridization. Cold Spring Harb Protoc 9:pdb prot5286

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Qiang Wang (Institute of Zoology, Chinese Academy of Sciences) and Dr. Zongbin Cui (Institute of Hydrobiology, Chinese Academy of Sciences) for kindly providing the plasmids Emx1, Krox20, Pax2a and Shha of zebrafish. This work was supported by a Grant from the National Natural Science Foundation of China (Nos. 31071110 and 31101631) and also from China Postdoctoral Science Foundation funded project (2014M561711).

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiquan Wang.

Additional information

Guanghui Qian and Liyan Zhu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, G., Zhu, L., Li, G. et al. Distinct expression patterns and functions of the pygopus genes in amphioxus and zebrafish early embryogenesis. Genes Genom 37, 375–386 (2015). https://doi.org/10.1007/s13258-015-0266-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0266-5

Keywords

Navigation