Skip to main content
Log in

Composition and evolutionary importance of transposable elements in humans and primates

  • Review
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) have skill of altering the position inside the genome and these TEs are widespread in both of plants and animals. They are separated into class I called retrotransposons, and class II called DNA transposons. According to the previous studies, not only TEs are related with disease, they are key factor of human and primate evolution. From this review, we discussed about the impact of transposable element, its role in the genome of human and primates and how TE distribution is differ from them. Additionally, we described how TEs contributed on primate evolution by its unique role. This review could be great use for further studies in relation to evolution mechanism and various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ayarpadikannan S, Kim HS (2014) The impact of transposable elements in genome evolution and genetic instability and their implications in various disease. Genomics Inf 12:98–104

    Article  Google Scholar 

  • Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:846–860

    Article  CAS  PubMed  Google Scholar 

  • Brett D, Pospisil H, Valcárcel J, Reich J, Bork P (2002) Alternative splicing and genome complexity. Nat Genet 30:29–30

    Article  CAS  PubMed  Google Scholar 

  • Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. Genome Dyn 1:104–115

    Article  CAS  PubMed  Google Scholar 

  • Carbone L, Harris RA, Mootnick AR, Milosavljevic A, Martin DK, Rocchi M, Capozzi O, Archidaiacono N, Konkel MK, Walker JA et al (2012) Centromere remodeling in hoolock leuconedys (hylobatidae) by a new transposable element unique to the gibbons. Genome Biol Evol 4:760–770

    Article  PubMed Central  Google Scholar 

  • Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J, Meyer TJ, Herrero J, Roos C, Aken B et al (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513:195–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Tovar-Corona JM, Urrutia AO (2012) Alternative splicing: a potential source of functional innovation in the eukaryotic genome. Int J Evol Biol 2012. doi:10.1155/2012/596274

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703  

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farcas R, Schneider E, Frauenknecht K, Kondova I, Bontrop R, Jürgen B, Navarro B, Metzler M, Zischler H, Zechner U et al (2009) Difference in DNA methylation patterns and expression of the CCRK gene in human and nonhuman primate cortices. Mol Bio Evol 26:1379–1389

    Article  CAS  Google Scholar 

  • Gibbs RA, Rogers J (2012) Gorilla gorilla gorilla. Nature 483:164–165

    Article  CAS  PubMed  Google Scholar 

  • Han K, Lee J, Meyer TJ, Wang J, Sen SK, Srikanta D, Liang P, Batzer MA (2007a) Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet 3:e184

    Article  PubMed Central  Google Scholar 

  • Han K, Konkel MK, Xing J, Wang H, Lee J, Meyer TJ, Huang CT, Sandifer E, Hebert K, Barnes EW et al (2007b) Mobile DNA in old world monkeys: a glimpse through the rhesus macaque genome. Science 316:238–240

    Article  CAS  PubMed  Google Scholar 

  • Hara Y, Imanishi T, Satta Y (2012) Reconstructing the demographic history of the human lineage using whole-genome sequences from human and three great apes. Genome Biol Evol 4:1133–1145

    Article  PubMed Central  PubMed  Google Scholar 

  • Hernando-Herraez I, Parado-Martinez J, Garg P, Fernandez-Callejo M, Heyn H, Hvilsom C, Navarro A, Esteller M, Sharp AJ, Marques-Bonet T (2013) Dynamics of DNA methylation in recent human and great ape evolution. PLoS Genet 9:e1003763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hurst GEE, Werren JH (2001) The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 8:597–606

    Article  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Keller TE, Yi SV (2014) DNA methylation and evolution of duplicate genes. P Natl Acad Sci USA 111:5932–5937

    Article  CAS  Google Scholar 

  • Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355

    Article  CAS  PubMed  Google Scholar 

  • Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:287–288

    Google Scholar 

  • Kidwell MG, Lisch DR (2001) Transposable elements parasitic DNA, and genome evolution. Evolution 55:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kreahling J, Graveley BR (2004) The origins and implications of Aluternative splicing. Trends Genet 20:1–4

    Article  CAS  PubMed  Google Scholar 

  • Li WH, Saunders MA (2005) The chimpanzee and us. Nature 437:50–51

    Article  CAS  PubMed  Google Scholar 

  • Liu GE, Alkan C, Jiang L, Zhao S, Eichler EE (2009) Comparative analysis of alu repeats in primate genomes. Genome Res 19:876–885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, Yang SP, Wang Z, Chinwalla AT, Minx P et al (2011) Comparative and demographic analysis of orang-utan genomes. Nature 469:529–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23:34–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mills RE, Bennett EA, Iskow RC, Devine SE (2007) Which transposable elements are active in the human genome? Trends Genet 23:183–191

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Fickett JW, Gelfand MS (1999) Frequent alternative splicing of human genes. Genome Res 9:1288–1293

    Article  Google Scholar 

  • Olson MV, Varki A (2002) Sequencing the chimpanzee genome: insights into human evolution and disease. Nat Rev Genet 4:20–28

    Article  Google Scholar 

  • Pace IIJK, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17:422–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B, Koren S, Sutton G, Kodira C, Winer R et al (2012) The bonobo genome compared with the chimpanzee and human genomes. Nature 486:527–531

    PubMed Central  PubMed  Google Scholar 

  • Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234

    Article  Google Scholar 

  • Rogers J (1994) Levels of the genealogical hierarchy and the problem of hominoid phylogeny. Am J Phys Anthropol 94:81–88

    Article  Google Scholar 

  • Ruvolo M (1997) Molecular phylogeny of the hominoids: inferences from multiple independent DNA sequences data sets. Mol Bio Evol 14:248–265

    Article  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motochoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • Scally A, Durbin R (2012) Revising the human mutation rate: implications for understanding human evolution. Nat Rev Genet 13:745–753

    Article  CAS  PubMed  Google Scholar 

  • Smit AFA, Hubley R, Green P (2010) RepeatMasker Open-3.0. http://www.repeatmasker.org

  • The Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  Google Scholar 

  • The Marmoset Genome Sequencing and Analysis Consortium (2014) The common marmoset genome provides insight into primate biology and evolution. Nat Genet 46:850–857

    Article  PubMed Central  Google Scholar 

  • Ventura M, Catacchio CR, Alkan C, Marques-Bonet T, Sajjadian S, Graves TA, Hormozdiari F, Navarro A, Malig M, Baker C et al (2011) Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee. Genome Res 21:1640–1649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vigilant L, Bradley BJ (2004) Genetic variation in gorillas. Am J Primatol 64:161–172

    Article  Google Scholar 

  • Walker JA, Konkel MK, Ullmer B, Monceaux CP, Ryder OA, Hubley R, Smit AFA, Batzer MA (2012) Orangutan alu quiescence reveals possible source element: support for ancient backseat drivers. Mob DNA 3:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Cao X, Zhang Y, Su B (2012) Genome-wide DNA methylation analyses in the brain reveal four differentially methylated regions between humans and non-human primates. BMC Evol Biol 12:114

    Article  CAS  Google Scholar 

  • Wheeler TJ, Clemements J, Eddy SR, Hubley R, Jones TA, Jurka J, Smit AFA, Finn RD (2012) Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acid Res 41:D70–D82

    Article  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:972–982

    Article  Google Scholar 

  • Yohn CT, Jiang Z, McGrath SD, Hayden KE, Khaitovich P, Johnson ME, Eichler MY, McPherson JD, Zhao S, Pääbo S et al (2005) Lineage-specific expansions of retroviral insertions within the genomes of African greatapes but not humans and orangutans. PLoS Biol 3:e110

    Article  PubMed Central  PubMed  Google Scholar 

  • Yuan Z, Sun X, Liu H, Xie J (2011) MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS ONE 6:e17666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Wang YQ, Su B (2008) Molecular evolution of a primate-specific micro-RNA family. Mol Biol Evol 25:1493–1502

    Article  CAS  PubMed  Google Scholar 

  • Zhu y, Skogerbø G, Ning Q, Wang Z, Li B, Yang S, Sun H, Li Y (2012) Evolutionary relationship between miRNA genes and their activity. BMC Genom 13:718

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by an award from the AGENDA project (Project No. PJ009254) at the National Institute of Animal Science, Rural Development Administration (RDA).

Conflict of interest

There is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HE., Eo, J. & Kim, HS. Composition and evolutionary importance of transposable elements in humans and primates. Genes Genom 37, 135–140 (2015). https://doi.org/10.1007/s13258-014-0249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0249-y

Keywords

Navigation