Skip to main content
Log in

TE composition of human long noncoding RNAs and their expression patterns in human tissues

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

High-throughput sequencing analyses have revealed that transposable elements (TEs) comprise approximately half of the human genome and frequently involved in genomic rearrangements and instability by various mechanisms. Interestingly, many noncoding RNAs (ncRNAs) contain TEs and the TE-containing ncRNAs that have been implicated in cellular processes and various diseases in mammals. In this study, we retrieved 94 human long noncoding RNAs (lncRNAs; >200 nucleotides in length) from lncRNAdb and analyzed TEs which are embedded within the lncRNAs, focusing on their chromosomal distribution. The result showed that TEs occupy ~27 % of the lncRNA transcripts in mass and lncRNA containing TEs are enriched in human chromosome 11. We further analyzed subfamily of the TEs and found that most of the TEs belong to AluSx and L1 which are the most successful TE subfamilies in the human genome. Numerous lncRNAs have been reported to be expressed in a cell-type specific manner. Thus, using reverse transcription PCR with specific primers for the lncRNAs, we examined their expression pattern in human normal tissues and cancer cells. Most of the lncRNAs were universally amplified from 20 different types of normal human tissues but some of them displayed tissue-specific expression. Especially, 11 lncRNAs were expressed only in human cancer cells, implying the possibility of their involvement in carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfano G, Vitiello C, Caccioppoli C, Caramico T, Carola A, Szego MJ, McInnes RR, Auricchio A, Banfi S (2005) Natural antisense transcripts associated with genes involved in eye development. Hum Mol Genet 14:913-923

  • Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome 19:454–492

  • Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39:D146–D151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB, Ru K, Mercer TR, Thompson ER, Lakhani SR et al (2011) SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17:878–891

  • Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379

    Article  CAS  PubMed  Google Scholar 

  • Brosnan CA, Voinnet O (2009) The long and the short of noncoding RNAs. Curr Opin Cell Biol 21:416–425

    Article  CAS  PubMed  Google Scholar 

  • Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457

    Article  CAS  PubMed  Google Scholar 

  • Cartault F, Munier P, Benko E, Desguerre I, Hanein S, Boddaert N, Bandiera S, Vellayoudom J, Krejbich-Trotot P, Bintner M et al (2012) Mutation in a primate-conserved retrotransposon reveals a noncoding RNA as a mediator of infantile encephalopathy. Proc Natl Acad Sci USA 109:4980–4985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET et al (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delgado André N, De Lucca FL (2008) Non-coding transcript in T cells (NTT): antisense transcript activates PKR and NF-kappaB in human lymphocytes. Blood Cells Mol Dis 40:227–232

  • Demers C, Chaturvedi CP, Ranish JA, Juban G, Lai P, Morle F, Aebersold R, Dilworth FJ, Groudine M, Brand M (2007) Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. Mol Cell 27:573–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dinger ME, Pang KC, Mercer TR, Mattick JS (2008) Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol 4:e1000176

    Article  PubMed Central  PubMed  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–1484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu X, Ravindranath L, Tran N, Petrovics G, Srivastava S (2006) Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol 25:135–141

    Article  PubMed  Google Scholar 

  • Guenzl PM, Barlow DP (2012) Macro lncRNAs: a new layer of cis-regulatory information in the mammalian genome. RNA Biol 9:731–741

    Article  CAS  PubMed  Google Scholar 

  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hadjiargyrou M, Delihas N (2013) The intertwining of transposable elements and non-coding RNAs. Int J Mol Sci 14:13307–13328

    Article  PubMed Central  PubMed  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S et al (2012) GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res 22:1760–1774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He H, Nagy R, Liyanarachchi S, Jiao H, Li W, Suster S, Kere J, de la Chapelle A (2009) A susceptibility locus for papillary thyroid carcinoma on chromosome 8q24. Cancer Res 69:625–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez A, Garcia B, Obregon MJ (2007) Gene expression from the imprinted Dio3 locus is associated with cell proliferation of cultured brown adipocytes. Endocrinology 148:3968–3976

  • Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D, Morris KV (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelley D, Rinn J (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13:R107

    Article  PubMed Central  PubMed  Google Scholar 

  • Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu AY, Torchia BS, Migeon BR, Siliciano RF (1997) The human NTT gene: identification of a novel 17-kb noncoding nuclear RNA expressed in activated CD4+ T cells. Genomics 39:171–184

  • Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42:1113–1117

  • Louro R, El-Jundi T, Nakaya HI, Reis EM, Verjovski-Almeida S (2008) Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci. Genomics 92:18–25

    Article  CAS  PubMed  Google Scholar 

  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605

    Article  CAS  PubMed  Google Scholar 

  • Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5:472–484

    Article  CAS  PubMed  Google Scholar 

  • Mancini-Dinardo D, Steele SJ, Levorse JM, Ingram RS, Tilghman SM (2006) Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 20:1268–1282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, Griffith M, Heravi Moussavi A, Senz J, Melnyk N et al (2011) deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 7:e1001138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizuuchi K (1992) Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu Rev Biochem 61:1011–1051

    Article  CAS  PubMed  Google Scholar 

  • Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28:195–208

    Article  CAS  PubMed  Google Scholar 

  • Ng K, Pullirsch D, Leeb M, Wutz A (2007) Xist and the order of silencing. EMBO Rep 8:34–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niazi F, Valadkhan S (2012) Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3′ UTRs. RNA 18:825–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:45–58

  • Qiao HP, Gao WS, Huo JX, Yang ZS (2013) Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev 14:1077–1082

    Article  PubMed  Google Scholar 

  • Raha D, Wang Z, Moqtaderi Z, Wu L, Zhong G, Gerstein M, Struhl K, Snyder M (2010) Close association of RNA polymerase II and many transcription factors with Pol III genes. Proc Natl Acad Sci USA 107:3639–3644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sado T, Brockdorff N (2013) Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos Trans R Soc Lond B 368:20110325

    Article  Google Scholar 

  • Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S, Muranishi Y, Irie S, Uneo S, Koyasu T, Matsui R et al (2011) miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 14:1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 71:3–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandeweyer G, Reyniers E, Wuyts W, Rooms L, Kooy RF (2011) CNV-WebStore: online CNV analysis, storage and interpretation. BMC Bioinformatics 12:4

  • Walter P, Blobel G (1982) Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299:691–698

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Song X, Glass CK, Rosenfeld MG (2011) The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 3:a003756

    PubMed Central  PubMed  Google Scholar 

  • Warnefors M, Pereira V, Eyre-Walker A (2010) Transposable elements: insertion pattern and impact on gene expression evolution in hominids. Mol Biol Evol 27:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Wevrick R, Francke U (1997) An imprinted mouse transcript homologous to the human imprinted in Prader-Willi syndrome (IPW) gene. Hum Mol Genet 6:325–332

  • Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573

    Article  CAS  PubMed  Google Scholar 

  • Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan MD, Hong CC, Lai GM, Cheng AL, Lin YW, Chuang SE (2005) Identification and characterization of a novel gene Saf transcribed from the opposite strand of Fas. Hum Mol Genet 14:1465–1474

  • Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, Lu Z, Bai C, Watabe K, Mo YY (2013) The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 23:340–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282:24731–24742

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was conducted with funding from the Research Fund of Dankook University in 2013.

Conflict of interest

The authors declare that there is no conflict of interests exists in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyudong Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 77 kb)

Supplementary material 2 (PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, D., Kim, YJ., Hong, K. et al. TE composition of human long noncoding RNAs and their expression patterns in human tissues. Genes Genom 37, 87–95 (2015). https://doi.org/10.1007/s13258-014-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0232-7

Keywords

Navigation