Skip to main content
Log in

Kinome sequencing reveals RET G691S polymorphism in human neuroendocrine lung cancer cell lines

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Neuroendocrine (NE) lung tumors comprise 20–25 % of all invasive lung malignancies. Currently, no effective treatments are available to cure these tumors, and it is necessary to identify a molecular alteration(s) that characterizes NE lung tumor cells. We aimed to identify a kinase mutation(s) associated with NE lung tumor by screening 517 kinase-encoding genes in human lung cancer cell lines. Our next-generation sequencing analysis of six NE lung tumor cell lines (four small cell lung cancer lines and two non-small cell lung cancer lines) and three non-NE lung tumor lines revealed various kinase mutations, including a nonsynonymous mutation in the proto-oncogene RET (c.2071G > A; p.G691S). Further evaluation of the RET polymorphism in total 15 lung cancer cell lines by capillary sequencing suggested that the frequency of the minor allele (A-allele) in NE lung tumor lines was significantly higher than its frequency in a reference population (p = 0.0001). However, no significant difference between non-NE lung tumor lines and a reference group was detected (p = 1.0). Nevertheless, neither RET expression levels were correlated with the levels of neuron-specific enolase (NSE), a key NE marker, nor vandetanib and cabozantinib, small molecule compounds that inhibit RET, affected NSE levels in lung cancer cells. Our data suggest a potential association of G691S RET polymorphism with NE lung tumor, proposing the necessity of more thorough evaluation of this possibility. The dataset of kinase mutation profiles in this report may help choosing cell line models for study of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

MEN2:

Multiple endocrine neoplasia type 2

NCBI:

National Center For Biotechnology Information

NE:

Neuroendocrine

NSE:

Neuron-specific enolase

NSCLC:

Non-small cell lung carcinoma

OR:

Odds ratio

RET:

Rearranged during transfection

SCLC:

Small cell lung carcinoma

SNP:

Single nucleotide polymorphism

References

  • Abaan OD, Polley EC, Davis SR, Zhu YJ, Bilke S, Walker RL, Pineda M, Gindin Y, Jiang Y, Reinhold WC et al (2013) The exomes of the nci-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res 73:4372–4382

    Article  CAS  PubMed  Google Scholar 

  • Asai N, Jijiwa M, Enomoto A, Kawai K, Maeda K, Ichiahara M, Murakumo Y, Takahashi M (2006) Ret receptor signaling: dysfunction in thyroid cancer and hirschsprung’s disease. Pathol Int 56:164–172

    Article  CAS  PubMed  Google Scholar 

  • Barr J, Amato CM, Robinson SE, Kounalakis N, Robinson WA (2012) The ret g691 s polymorphism is a germline variant in desmoplastic malignant melanoma. Melanoma Res 22:92–95

    Article  PubMed  Google Scholar 

  • Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R et al (2012) Ros1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30:863–870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cardot-Bauters C, Leteurtre E, Leclerc L, Vantyghem MC, Do Cao C, Wemeau JL, d’Herbomez M, Carnaille B, Barbu V, Pinson S et al (2008) Does the ret variant g691 s influence the features of sporadic medullary thyroid carcinoma? Clin Endocrinol (Oxf) 69:506–510

    Article  CAS  Google Scholar 

  • Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G, Ryan AJ, Fontanini G, Fusco A, Santoro M (2002) Zd6474, an orally available inhibitor of kdr tyrosine kinase activity, efficiently blocks oncogenic ret kinases. Cancer Res 62:7284–7290

    CAS  PubMed  Google Scholar 

  • Carney DN, Gazdar AF, Bepler G, Guccion JG, Marangos PJ, Moody TW, Zweig MH, Minna JD (1985) Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 45:2913–2923

    CAS  PubMed  Google Scholar 

  • Ceolin L, Siqueira DR, Ferreira CV, Romitti M, Maia SC, Leiria L, Crispim D, Ashton-Prolla P, Maia AL (2012) Additive effect of ret polymorphisms on sporadic medullary thyroid carcinoma susceptibility and tumor aggressiveness. Eur J Endocrinol 166:847–854

    Article  CAS  PubMed  Google Scholar 

  • de Groot JW, Links TP, Plukker JT, Lips CJ, Hofstra RM (2006) Ret as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev 27:535–560

    Article  PubMed  Google Scholar 

  • Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T, Chande A, Tanaka KE, Stransky N, Greulich H et al (2011) Inhibitor-sensitive fgfr1 amplification in human non-small cell lung cancer. PLoS ONE 6:e20351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elisei R, Cosci B, Romei C, Bottici V, Sculli M, Lari R, Barale R, Pacini F, Pinchera A (2004) Ret exon 11 (g691 s) polymorphism is significantly more frequent in sporadic medullary thyroid carcinoma than in the general population. J Clin Endocrinol Metab 89:3579–3584

    Article  CAS  PubMed  Google Scholar 

  • Futami H, Egawa S, Tsukada T, Maruyama K, Bandoh S, Noguchi M, Yamaguchi K (1995) A novel somatic point mutation of the ret proto-oncogene in tumor tissues of small cell lung cancer patients. Jpn J Cancer Res 86:1127–1130

    Article  CAS  PubMed  Google Scholar 

  • Futami H, Egawa S, Takasaki K, Tsukada T, Shiraishi M, Yamaguchi K (2003) Allelic loss of DNA locus of the ret proto-oncogene in small cell lung cancer. Cancer Lett 195:59–65

    Article  CAS  PubMed  Google Scholar 

  • Gazdar AF, Minna JD (1996) Nci series of cell lines: an historical perspective. J Cell Biochem Suppl 24:1–11

    Article  CAS  PubMed  Google Scholar 

  • Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, Spitznagel EL, Piccirillo J (2006) Changing epidemiology of small-cell lung cancer in the united states over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 24:4539–4544

    Article  PubMed  Google Scholar 

  • Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, Brace LE, Woods BA, Lin W, Zhang J et al (2011) Mutations in the ddr2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 1:78–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380

    Article  CAS  PubMed  Google Scholar 

  • Hong SK, Kim JH, Starenki D, Park JI (2013) Autophagy sensitivity of neuroendocrine lung tumor cells. Int J Oncol 43:2031–2038

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  • Kasprzak A, Zabel M, Biczysko W (2007) Selected markers (chromogranin a, neuron-specific enolase, synaptophysin, protein gene product 9.5) in diagnosis and prognosis of neuroendocrine pulmonary tumours. Pol J Pathol 58:23–33

    CAS  PubMed  Google Scholar 

  • Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y et al (2012) Kif5b-ret fusions in lung adenocarcinoma. Nat Med 18:375–377

    Article  CAS  PubMed  Google Scholar 

  • Lantieri F, Caroli F, Ceccherini I, Griseri P (2012) The involvement of the ret variant g691 s in medullary thyroid carcinoma enlightened by a meta-analysis study. Int J Cancer 132:2808–2819

    Article  PubMed  Google Scholar 

  • Linnoila RI (1996) Spectrum of neuroendocrine differentiation in lung cancer cell lines featured by cytomorphology, markers, and their corresponding tumors. J Cell Biochem Suppl 24:92–106

    Article  CAS  PubMed  Google Scholar 

  • Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW et al (2012) Identification of new alk and ret gene fusions from colorectal and lung cancer biopsies. Nat Med 18:382–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narita N, Tanemura A, Murali R, Scolyer RA, Huang S, Arigami T, Yanagita S, Chong KK, Thompson JF, Morton DL et al (2009) Functional ret g691 s polymorphism in cutaneous malignant melanoma. Oncogene 28:3058–3068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L et al (2004) Egf receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101:13306–13311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, Plenker D, Leenders F, Sun R, Zander T et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Phelps RM, Johnson BE, Ihde DC, Gazdar AF, Carbone DP, McClintock PR, Linnoila RI, Matthews MJ, Bunn PA Jr, Carney D et al (1996) Nci-navy medical oncology branch cell line data base. J Cell Biochem Suppl 24:32–91

    Article  CAS  PubMed  Google Scholar 

  • Plaza Menacho I, Koster R, van der Sloot AM, Quax WJ, Osinga J, van der Sluis T, Hollema H, Burzynski GM, Gimm O, Buys CH et al (2005) Ret-familial medullary thyroid carcinoma mutants y791f and s891a activate a src/jak/stat3 pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res 65:1729–1737

    Article  PubMed  Google Scholar 

  • Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C et al (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Preacher KJ, Briggs NE (2001) Calculation for fisher’s exact test: an interactive calculation tool for fisher’s exact probability test for 2 × 2 tables http://quantpsy.org. Accessed 24 Oct 2013

  • Rekhtman N (2010) Neuroendocrine tumors of the lung: an update. Arch Pathol Lab Med 134:1628–1638

    PubMed  Google Scholar 

  • Robledo M, Gil L, Pollan M, Cebrian A, Ruiz S, Azanedo M, Benitez J, Menarguez J, Rojas JM (2003) Polymorphisms g691 s/s904 s of ret as genetic modifiers of men 2a. Cancer Res 63:1814–1817

    CAS  PubMed  Google Scholar 

  • Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, Bergbower EA, Guan Y, Shin J, Guillory J et al (2012) Comprehensive genomic analysis identifies sox2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44:1111–1116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH et al (1995) Activation of ret as a dominant transforming gene by germline mutations of men2a and men2b. Science 267:381–383

    Article  CAS  PubMed  Google Scholar 

  • Sawai H, Okada Y, Kazanjian K, Kim J, Hasan S, Hines OJ, Reber HA, Hoon DS, Eibl G (2005) The g691 s ret polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Cancer Res 65:11536–11544

    Article  CAS  PubMed  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  • Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H et al (2007) Identification of the transforming eml4-alk fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  CAS  PubMed  Google Scholar 

  • Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) Snpstats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929

    Article  CAS  PubMed  Google Scholar 

  • Sos ML, Dietlein F, Peifer M, Schottle J, Balke-Want H, Muller C, Koker M, Richters A, Heynck S, Malchers F et al (2012) A framework for identification of actionable cancer genome dependencies in small cell lung cancer. Proc Natl Acad Sci U S A 109:17034–17039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swarts DR, Ramaekers FC, Speel EJ (2012) Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta 1826:255–271

    CAS  PubMed  Google Scholar 

  • Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H et al (2012) Ret, ros1 and alk fusions in lung cancer. Nat Med 18:378–381

    Article  CAS  PubMed  Google Scholar 

  • Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36:65–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Travis WD (2009) Lung tumours with neuroendocrine differentiation. Eur J Cancer 45(Suppl 1):251–266

    Article  PubMed  Google Scholar 

  • van Meerbeeck JP, Fennell DA, De Ruysscher DK (2011) Small-cell lung cancer. Lancet 378:1741–1755

    Article  PubMed  Google Scholar 

  • Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chester R, Jackson JA, Boffey SJ, Valentine PJ, Curwen JO, Musgrove HL et al (2002) Zd6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62:4645–4655

    CAS  PubMed  Google Scholar 

  • Wu PK, Hong SK, Veeranki S, Karkhanis M, Starenki D, Plaza JA, Park JI (2013) A mortalin/hspa9-mediated switch in tumor-suppressive signaling of raf/mek/extracellular signal-regulated kinase. Mol Cell Biol 33:4051–4067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B et al (2011) Cabozantinib (xl184), a novel met and vegfr2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 10:2298–2308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Barry Nelkin at Johns Hopkins Medical Institute for cell lines, Dr. Ruta Brazauskas (Division of Biostatistics, Medical College of Wisconsin) for statistical analysis, and Dr. Jin-Hwan Kim and Cassandra Neitzel for technical assistance. This work was supported by Research Acceleration Grant (In Kind) for the American Cancer Society, FAMRI Young Investigator Award (062438), American Cancer Society (RSGM-10-189-01-TBE), and National Cancer Institute (R01CA138441) to J.P.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-In Park.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosonkina, N., Hong, SK., Starenki, D. et al. Kinome sequencing reveals RET G691S polymorphism in human neuroendocrine lung cancer cell lines. Genes Genom 36, 829–841 (2014). https://doi.org/10.1007/s13258-014-0217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0217-6

Keywords

Navigation