Skip to main content
Log in

The yeast ESCRT complexes are involved in the regulation of transcription elongation

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Endosomal sorting complex required for transport (ESCRT) is involved in membrane protein degradation through the recognition and sorting of ubiquitylated cargo proteins into the multivesicular body before fusion with the lysosome/vacuole. However, recent studies have challenged this canonical cellular function of ESCRT and have implicated a role for this machinery in multiple intracellular pathways. Here, we provide evidence that ESCRT complexes contribute to the regulation of transcription elongation in Saccharomyces cerevisiae. Most strains deficient in each subunit of ESCRT-0, -I, -II, and -III showed significant sensitivity to 6-azauracil or mycophenolic acid, a phenotype associated with transcription elongation defects. Moreover, these deletion strains significantly reduced transcription activation through Gcn4, a regulator of the general amino acid control. The transcription factor Rim101, which is proteolytically activated through the multimerized component Vps32/Snf7 of ESCRT-III and its collaborative proteins, was not associated with transcription elongation or Gcn4 activation. In addition, we observed that ESCRT complexes were crosslinked at the 3′ region of the coding sequence in the actively transcribed gene. In summary, these results suggest that ESCRT complexes promote genes transcription during the late stages of elongation and are required for transcription activation through Gcn4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn SH, Kim M, Buratowski S (2004) Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol Cell 13:67–76

    Article  CAS  PubMed  Google Scholar 

  • Ahn SH, Keogh MC, Buratowski S (2009) Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II. EMBO J 28:205–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babst M, Odorizzi G, Estepa EJ, Emr SD (2000) Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1:248–258

    Article  CAS  PubMed  Google Scholar 

  • Bilodeau PS, Urbanowski JL, Winistorfer SC, Piper RC (2002) The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nat Cell Biol 4:534–539

    CAS  PubMed  Google Scholar 

  • Bilodeau PS, Winistorfer SC, Kearney WR, Robertson AD, Piper RC (2003) Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J Cell Biol 163:237–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandrasekharan MB, Huang F, Sun ZW (2010) Histone H2B ubiquitination and beyond: regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. Epigenetics 5:460–468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choudhary S, Xiao T, Srivastava S, Zhang W, Chan LL, Vergara LA, Van Kuijk FJ, Ansari NH (2005) Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells. Toxicol Appl Pharmacol 204:122–134

    Article  CAS  PubMed  Google Scholar 

  • de Aldana CV, Wek RC, Segundo P, Truesdell AG, Hinnebusch AG (1994) Multicopy tRNA genes functionally suppress mutations in yeast eIF-2 alpha kinase GCN2: evidence for separate pathways coupling GCN4 expression to unchanged tRNA. Mol Cell Biol 14:7920–7932

    Article  Google Scholar 

  • Exinger F, Lacroute F (1992) 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr Genet 22:9–11

    Article  CAS  PubMed  Google Scholar 

  • Gaur NA, Hasek J, Brickner DG, Qiu H, Zhang F, Wong CM, Malcova I, Vasicova P, Brickner JH, Hinnebusch AG (2013) Vps factors are required for efficient transcription elongation in budding yeast. Genetics 193:829–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hampsey M (1997) A review of phenotypes in Saccharomyces cerevisiae. Yeast 13:1099–1133

    Article  CAS  PubMed  Google Scholar 

  • Hartman JL, Tippery NP (2004) Systematic quantification of gene interactions by phenotypic array analysis. Genome Biol 5:R49

    Article  PubMed Central  PubMed  Google Scholar 

  • Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    Article  CAS  PubMed  Google Scholar 

  • Jia MH, Larossa RA, Lee JM, Rafalski A, Derose E, Gonye G, Xue Z (2000) Global expression profiling of yeast treated with an inhibitor of amino acid biosynthesis, sulfometuron methyl. Physiol Genomics 3:83–92

    CAS  PubMed  Google Scholar 

  • Kamura T, Burian D, Khalili H, Schmidt SL, Sato S, Liu WJ, Conrad MN, Conaway RC, Conaway JW, Shilatifard A (2001) Cloning and characterization of ELL-associated proteins EAP45 and EAP20. a role for yeast EAP-like proteins in regulation of gene expression by glucose. J Biol Chem 276:16528–16533

    Article  CAS  PubMed  Google Scholar 

  • Koc A, Wheeler LJ, Mathews CK, Merrill GF (2004) Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 279:223–230

    Article  CAS  PubMed  Google Scholar 

  • MacDonald C, Buchkovich NJ, Stringer DK, Emr SD, Piper RC (2012) Cargo ubiquitination is essential for multivesicular body intralumenal vesicle formation. EMBO Rep 13:331–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maeda T (2012) The signaling mechanism of ambient pH sensing and adaptation in yeast and fungi. FEBS J 279:1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PJ, Tjian R (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378

    Article  CAS  PubMed  Google Scholar 

  • Rothfels K, Tanny JC, Molnar E, Friesen H, Commisso C, Segall J (2005) Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol 25:6772–6788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saksena S, Sun J, Chu T, Emr SD (2007) ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32:561–573

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AE, Miller T, Schmidt SL, Shiekhattar R, Shilatifard A (1999) Cloning and characterization of the EAP30 subunit of the ELL complex that confers derepression of transcription by RNA polymerase II. J Biol Chem 274:21981–21985

    Article  CAS  PubMed  Google Scholar 

  • Shestakova A, Hanono A, Drosner S, Curtiss M, Davies BA, Katzmann DJ, Babst M (2010) Assembly of the AAA ATPase Vps4 on ESCRT-III. Mol Biol Cell 21:1059–1071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shields SB, Oestreich AJ, Winistorfer S, Nguyen D, Payne JA, Katzmann DJ, Piper R (2009) ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting. J Cell Biol 185:213–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shilatifard A (1998) Identification and purification of the Holo-ELL complex. Evidence for the presence of ELL-associated proteins that suppress the transcriptional inhibitory activity of ELL. J Biol Chem 273:11212–11217

    Article  CAS  PubMed  Google Scholar 

  • Slagsvold T, Pattni K, Malerod L, Stenmark H (2006) Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol 16:317–326

    Article  CAS  PubMed  Google Scholar 

  • Snoek IS, Tai SL, Pronk JT, Yde Steensma H, Daran JM (2010) Involvement of Snf7p and Rim101p in the transcriptional regulation of TIR1 and other anaerobically upregulated genes in Saccharomyces cerevisiae. FEMS Yeast Res 10:367–384

    Article  CAS  PubMed  Google Scholar 

  • Song YH, Ahn SH (2010) A Bre1-associated protein, large 1 (Lge1), promotes H2B ubiquitylation during the early stages of transcription elongation. J Biol Chem 285:2361–2367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun ZW, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418:104–108

    Article  CAS  PubMed  Google Scholar 

  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Yanagi Y, Masuhiro Y, Yano T, Yoshikawa H, Yanagisawa J, Kato S (1998) A putative tumor suppressor, TSG101, acts as a transcriptional suppressor through its coiled-coil domain. Biochem Biophys Res Commun 245:900–905

    Article  CAS  PubMed  Google Scholar 

  • Weiss P, Huppert S, Kolling R (2008) ESCRT-III protein Snf7 mediates high-level expression of the SUC2 gene via the Rim101 pathway. Eukaryot Cell 7:1888–1894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu W, Mitchell AP (2001) Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like region and is required for its proteolytic cleavage. J Bacteriol 183:6917–6923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu W, Smith FJ Jr, Subaran R, Mitchell AP (2004) Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol Cell 15:5528–5537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang F, Gaur NA, Hasek J, Kim SJ, Qiu H, Swanson MJ, Hinnebusch AG (2008) Disrupting vesicular trafficking at the endosome attenuates transcriptional activation by Gcn4. Mol Cell Biol 28:6796–6818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jerry L. Workman for kindly providing the strains YKH045, YKH046, and YKH047 and Alan G. Hinnebusch for providing strain H4228 and the plasmids pKN7 and pYHC2. This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIP) (Nos. 2012R1A2A4A01007667 and 20110030049).

Conflict of interest

Authors declare no conflict of interest on this article contents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hoon Ahn.

Additional information

Young-Ha Song and Ruxin Duan have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 kb)

Supplementary material 2 (PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, YH., Duan, R., Ryu, HY. et al. The yeast ESCRT complexes are involved in the regulation of transcription elongation. Genes Genom 36, 335–343 (2014). https://doi.org/10.1007/s13258-013-0171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-013-0171-8

Keywords

Navigation