Skip to main content
Log in

Identification, fine mapping and characterization of Rht-dp, a recessive wheat dwarfing (reduced height) gene derived from Triticum polonicum

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Semi-dwarfism is an agronomically important trait in breeding for resistance to damage by wind and rain (lodging resistance) and for stable high yields. Dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB AS304) is a potential donor of dwarfing and other traits for common wheat improvement. A genetic analysis using an F2 population derived from a cross of AS304 and tall cultivar AS302 and derived F2:3 lines indicated that AS304 carries a recessive dwarfing gene, temporarily designated Rht-dp. Molecular markers and bulked segregant analysis were used to characterize and map the gene. Eight polymorphic SSR markers (Xwmc511, Xgwm495, Xgwm 113, Xgwm192, Xgpw7026, Xgpw3017, Xgpw1108 and Xgpw7521) on chromosome arm 4BS and two AFLP markers (M 8 /E 5 and M 4 /E 3 ) were mapped relative to the dwarfing locus. The closest linked markers, Xgpw3017 and M 8 /E 5 at 0.5 and 3.5 cM, respectively, from Rht-dp will enable its marker assisted transfer to wheat breeding populations. Allelic tests indicated that Rht-dp was allelic to Rht-B1b; hence it may be an alternative allele at the Rht-B1 locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassam BJ, Caetano-Anolles G and Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, De Giovanni C, Laddomada B, Sciancalepore A, Simeone R, Devos KM and Gale MD (1996) Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breed. 115: 310–316.

    Article  Google Scholar 

  • Börner A, Plaschke J, Korzun V and Worland AJ (1996) Relationship between the dwarfing genes of wheat and rye. Euphytica 89: 69–75.

    Article  Google Scholar 

  • Elliott MC (2008) Foreword. In: Slater A (ed) Plant biotechnology: the genetic manipulation of plants, 2nd edn. Oxford University Press, New York.

    Google Scholar 

  • Ellis MH, Bonnett DG and Rebetzke GJ (2007) A 192bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica 157: 209–214.

    Article  CAS  Google Scholar 

  • Ellis MH, Rebetzke GJ, Azanza F, Richards RA and Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor. Appl. Genet. 111: 423–430.

    Article  PubMed  CAS  Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ and Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor. Appl. Genet. 105: 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  • Evans LT (1998) Feeding the ten billion: plant and population growth. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Gale MD, Law CN and Worland AJ (1975) The chromosomal location of a major dwarfing gene from Norin 10 in new British semi dwarf wheats. Heredity 35: 417–421.

    Article  Google Scholar 

  • Gale MD and Marshall GA (1976) The chromosomal location of Gai1 and Rht1 genes for gibberellin insensitivity and semi-dwarfism in a derivative of Norin 10 wheat. Heredity 37: 283–289.

    Article  Google Scholar 

  • Gale MD, Youssefian S and Russell GE (1985) Dwarfing genes in wheat. In: Progress in plant breeding. Butterworths, London, pp. 1–35.

    Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter A, Dubcovsky J, et al. (2002) Genetic mapping of 66 new microsatellite (SSR) in bread wheat. Theor. Appl. Genet. 105: 413–422.

    Article  PubMed  CAS  Google Scholar 

  • Hargrove TR and Cabanilla VL (1979) The impact of semi-dwarf varieties on Asian rice-breeding programs. Bioscience 29: 731–735.

    Article  Google Scholar 

  • Haque MA, Martinek P, Kobayashi S, Kita I, Ohwaku K, Watanabe N and Kuboyama T (2011) Microsatellite mapping of genes for semi-dwarfism and branched spike in Triticum durum Desf. var. ramosoobscurum Jakubz. “Vetvistokoloskaya”. Genet. Resour. Crop Evol. 59: 831–837.

    Article  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet. 19: 5–9.

    Article  PubMed  CAS  Google Scholar 

  • Heisey PW, Lantican MA and Dubin HJ (1999) Assessing the benefits of international wheat breeding research: An overview of the global wheat impacts study. In: Pinggali PL (ed) CIMMYT 1998–1999 World Wheat Facts and Trends. Global Wheat Research in a Changing World: Challenges and Achievements, Mexico D.F., pp. 19–26.

    Google Scholar 

  • Kang HY, Wang Y, Yuan HJ, Jiang Y and Zhou YH (2008) A new synthesized 6x-wheat, derived from dwarfing polish wheat (Triticum polonicum L.) and Aegilops tauschii Cosson. Int. J. Agric. Res. 3: 252–260.

    Article  Google Scholar 

  • Khush GS (2001) Green Revolution: the way forward. Nat. Rev. Genet. 2: 815–822.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi F and Futsuhara Y (1997) Inheritance of morphological characters. 2. Inheritance of semi-dwarf. In: Matsuo et al. (eds) Science of the rice plant, vol 3. Food and Agricultural Policy Research Center, Tokyo, Japan, pp. 309–317.

    Google Scholar 

  • Konzak CF (1987) Mutations and mutation breeding. In: Heyne EG (ed) Wheat and Wheat Improvement. 2nd Edition. American Society of Agronomy, Madison, Wisconsin, pp. 428–443.

    Google Scholar 

  • Konzak CF (1988) Genetic analysis, genetic improvement and evaluation of induced semi-dwarf mutants in wheat. Semidwarf cereal mutants and their use in cross-breeding III research coordination meeting, 16–20 December 1985. International Atomic Energy Agency, Vienna, Austria, pp. 39–50.

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann. Eugen. 12: 172–175.

    Google Scholar 

  • Li H, Wang Y, Li X, Gao Y, Wang Z, Zhao Y and Wang M (2011) A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Mol. Biol. Rep. 38: 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln S, Daly M and Lander E (1992) Constructing genetic maps with Mapmaker/EXP3.0. Whitehead Institute Techn Rep, 3rd edn. Whitehead Institute, Cambridge, MS.

    Google Scholar 

  • Liu GX, Zhou YH, Zheng YL, Yang RW and Ding CB (2002) The reaction of hormone gibberellic acid in dwarfing Polish wheat (Triticum polonicum) from Tulufan, Xinjiang. J. Sichuan Agric. Univ. 20: 81–83.

    Google Scholar 

  • Liu RH and Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25: 317–321.

    Google Scholar 

  • Lorenzetti R (2000) Wheat science. The green revolution of Nazareno Strampelli. J. Genet. Breed. (special publication) pp. 40.

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Appels R, Somers DJ and Anderson J (2008) Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proc 11th Int Wheat Genet Symp, Brisbane, Australia, pp. 59.

  • Michelmore RW, Paran I and Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, et al. (1999) ’Green revolution’ genes encode mutant gibberellin response modulators. Nature 400: 256–261.

    Article  PubMed  CAS  Google Scholar 

  • Peng ZS, Li X, Yang ZJ and Liao ML (2011) A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet. Mol. Res. 10: 2349–2357.

    Article  PubMed  CAS  Google Scholar 

  • Richards RA (1992) The effect of dwarfing genes in spring wheat in dry environments I. Agronomic characteristics. Aust. J. Agric. Res. 43: 517–527.

    Article  Google Scholar 

  • Rebetzke GJ, Richards RA, Fischer VM and Mickelson BJ (1999) Breeding long coleoptile, reduced height wheats. Euphytica 106: 159–168.

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P and Ganal MW (1998) A microsatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S and Crossa J (2001) Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats. Euphytica 119: 241–244.

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P and Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109: 1105–1114.

    Article  PubMed  CAS  Google Scholar 

  • Song ZJ, Kang HY and Zhou YH (2007) Genetic analysis on gibberellin acid insensitivity gene in dwarfing polish wheat. J. Triticeae Crops 27: 425–427.

    CAS  Google Scholar 

  • Spielmeyer W, Bonnett DG, Ellis MH, Rebetzke GJ and Richards RA (2001) Implementation of molecular markers to improve selection efficiency in CSIRO wheat breeding program. In: Proc 10th Australian Wheat Breeders Assembly, Mildura, 16–21 September 2001, pp. 88–91.

  • Stapper M and Fischer RA (1990) Genotype, sowing date and plant spacing influence on high-yielding irrigated wheat in southern New South Wales III. Potential yields and optimum flowering dates. Aust. J. Agric. Res. 41: 1046–1056.

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M and Zabeau M (1995) AFLP: A new technique for DNA fingerprinting. Nucleic. Acids Res. 23: 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N (2004) Triticum polonicum IC12196: a possible alternative source of GA3-insensitive semi-dwarfism. Cereal Res. Commun. 32: 429–434.

    Google Scholar 

  • Watanabe N, Kosuge K and Kuboyama T (2008) Genetic mapping of the genes and development of near-isogenic lines in durum wheat. EWAC Newslet. pp. 27–28.

  • Worland AJ, Korzun V, Roder MS, Ganal MW and Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor. Appl. Genet. 96: 1110–1120.

    Article  CAS  Google Scholar 

  • Worland AJ and Sayers EJ (1995) Rht1 (B. dw), an alternative allelic variant for breeding semi-dwarf wheat varieties. Plant Breed. 114: 397–400.

    Article  Google Scholar 

  • Worland AJ, Sayers EJ and Korzun V (2001) Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica 119: 155–159.

    Article  CAS  Google Scholar 

  • Zeng XH, Zhu LX, Chen YL, Qi LP, Pu YY, Wen J, Yi B, Shen JX, Ma CZ, Tu JX and Fu TD (2011) Identification, fine mapping and characterisation of a dwarf mutant (bnaC.dwf) in Brassica napus. Theor. Appl. Genet. 122: 421–428.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hong Zhou.

Additional information

H.-Y. Kang and L.-J. Lin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, HY., Lin, LJ., Song, ZJ. et al. Identification, fine mapping and characterization of Rht-dp, a recessive wheat dwarfing (reduced height) gene derived from Triticum polonicum . Genes Genom 34, 509–515 (2012). https://doi.org/10.1007/s13258-012-0022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-012-0022-z

Keywords

Navigation