Skip to main content
Log in

Genome-wide scan of the soybean genome using degenerate oligonucleotide primed PCR: an example for studying large complex genome structure

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The availability of next generation sequencing instruments has made large-scale and genome-wide sequence analysis more feasible in a wild variety of species with large complex genomes, especially crops. This report suggested an approach for characterizing large complex genomes of less-studied/orphan crops. Degenerate oligonucleotide primed PCR (DOP-PCR) is a useful tool for the survey of genomes in less-studied/orphan crops, as prior sequence information is not necessary. Here, four different degenerate primers were redesigned from previously described DOP-PCR primers. The degeneracy of these primers was increased with the addition of two more ‘Ns’. The amplified DOP-PCR products from Sinpaldalkong 2, a soybean genotype, were applied to GS-FLX and the reads from Sinpaldalkong 2 were mapped against Williams 82 as a reference (http://www.phytozome.net/soybean.php), using the Burrows-Wheeler Aligner (http://bio-bwa.sourceforge.net/). These results suggest the identification of 4 single nucleotide polymorphisms between Sinpaldalkong 2 and Williams 82 and recent duplication of the soybean genome. The sequenced reads were subsequently assembled into contigs by Newbler under default conditions. A total of 29 Sinpaldalkong 2 contigs exhibited 95% similarity and < E-100 when mega-blasted with Williams 82 reference sequences. These contigs were mapped to the soybean chromosomes and positioned as clusters within each chromosome. Most of the contigs also showed similarity with the Arabidopsis RNase H domain-containing protein, suggesting a potential way to study retrotransposons in less-studied/orphan crops. Using these modified DOP-PCR primers and GS-FLX, it is possible to obtain insight into the large complex genomes of less-studied/orphan crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barabaschi D, Guerra D, Lacrima K, Laino P, Michelotti V, Urso S, Vale G, and Cattivelli L (2011) Emerging knowledge from genome sequencing of crop species. Mol. Biotechnol. DOI 10.1007/s12033-011-9443-1.

  • Bennetzen JL, Ma J, and Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95: 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Brookes AJ (1999) The essence of SNPs. Gene 234: 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspiel N, et al. (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat. Genet. 23: 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier M-C, Magdelenat G, Gonthier C, et al. (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22: 1686–1701.

    Article  PubMed  CAS  Google Scholar 

  • Collins FS, Brookes LD, and Charkravati A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 8: 1229–1231.

    PubMed  CAS  Google Scholar 

  • Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, and Ma J (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J. 63: 584–598.

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, and Eversole K (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci. 16: 77–88.

    Article  PubMed  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, and Toulmin C (2010) Food security, the challenge of feeding 9 billion people. Science 327: 812–818.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal SM and Bashir R (2011) Nanopores: sensing and fundamental biological interactions. Springer, New York

    Google Scholar 

  • Janiak A, Kim MY, Van K, and Lee S-H (2008) Application of degenerate oligonucleotide primed PCR (DOP-PCR) for SNP discovery in soybean. Euphytica 162: 249–256

    Article  CAS  Google Scholar 

  • Jordan B, Charest A, Dowd JF, Blumenstiel JP, Yeh R-F, Osman A, Housman DE, and Landers JE (2002) Genome complexity reduction for SNP genotyping analysis. Proc. Natl. Acad. Sci. USA 99: 2942–2947.

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, and Schuman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106: 520–530.

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K and Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177: 1975–1985.

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, and Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet. 33: 102–106.

    Article  PubMed  CAS  Google Scholar 

  • Kim KD, Shin JH, Van K, Kim DH, and Lee S-H (2009) Dynamic rearrangements determine genome organization and useful traits in soybean. Plant Physiol. 151: 1066–1076.

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Ha BK, Jun TH, Hwang EY, Van K, Kuk YI, and Lee S-H (2004) Single nucleotide polymorphism discovery and linkage mapping of lipoxygeanse-2 gene (Lx2) in soybean. Euphytica 135: 169–177.

    Article  CAS  Google Scholar 

  • Kim SD, Hong EH, Song YG, Kim YH, Lee YH, Hwang YH, Kim HS, Lee SH, Kim WH, Ryu YH, Park RK (1994) New soybean variety resistant to disease and lodging, with adapted high yielding “Sinpaldalkong 2”. RDA J. Agric. Sci. 36: 153–157.

    Google Scholar 

  • Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, and Marra MA (2009) Circos: An information aesthetic for comparative genomics. Genome Res. 19: 1639–1645.

    Article  PubMed  CAS  Google Scholar 

  • Kuppuswamy MN, Hoffman JW, Kasper CK, Spitzer SG, Groce SL, and Bajaj SP (1991) Single nucleotide primer extension to detect genetic disease: Experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proc. Natl. Acad. Sci. USA 88: 1143–1147.

    Article  PubMed  CAS  Google Scholar 

  • Kwok P-Y and Gu Z (1999) Single nucleotide polymorphism libraries: why and how are we building them? Mol. Med. Today 5: 538–543.

    Article  CAS  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong F-L, Li M-W, He W, Qin N, Wang B, et al. (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Journal naNature Genet. 42: 1053–1059.

    Article  CAS  Google Scholar 

  • Li H and Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler Transform. Bioinformatics 26: 589–595.

    Article  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, and Durbin R, 1000 Genome Project Data Processing Subgroup. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.

    Article  PubMed  Google Scholar 

  • Martinez-Zapater JM, Carmona MJ, Diaz-Riquelme J, Fernandez L, and Lijavetzky D (2010) Grapevine genetics after the genome sequence: Challenges and limitations. Aust. J. Grape Wine Res. 16: 33–46.

    Article  Google Scholar 

  • Matthias M, Stenzel U, Myles S, Prüfer K, and Hofreiter M (2007) Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res. 35: e97.

    Article  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, et al. (2009) Genetic properties of the maize nested association mapping population. Science 325: 737–740.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KL, Høgh AL, and Emmersen J (2006) DeepSAGE-digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucl. Acids Res. 34: e133.

    Article  PubMed  Google Scholar 

  • Rafalski A (2002) Application of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 5: 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Rusk N (2009) Cheap third-generation sequencing. Nature Methods 6: 244–245.

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, et al. (2010) Genome sequence of the palaeopolyploid soybean. Nature 463: 178–183.

    Article  PubMed  CAS  Google Scholar 

  • Tester M and Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327: 818–822.

    Article  PubMed  CAS  Google Scholar 

  • Van K, Kim D, Cai C.M, Kim MY, Shin JH, Graham MA, Shoemaker RC, Choi B-S, Yang T-J, Lee S-H (2008) Sequence level analysis of recently duplicated regions in soybean [Glycine max (L.) Merr.] genome. DNA Res. 15: 93–102.

    CAS  Google Scholar 

  • Van K, Kim DH, Shin JH, and Lee S-H (2011) Genomics of plant genetic resources: past, present and future. Plant Genet. Resour. 9: 155–158.

    Article  Google Scholar 

  • Varshney RK, Close TJ, Singh NK, Hoisington DA, and Cook DR (2009) Orphan legume crops enter the genomics era! Curr. Opin. Plant Biol. 12: 202–210.

    Article  Google Scholar 

  • Varshney RK, Glaszmann J-C, Leung H, and Ribaut J-M (2010) More genomic resources for less-studied crops. Trends Biotechnol. 28: 452–460.

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, et al. (2007) A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8: 973–982.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young N, and Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163: 1123–1134.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ha Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van, K., Kang, Y.J., Shim, S.R. et al. Genome-wide scan of the soybean genome using degenerate oligonucleotide primed PCR: an example for studying large complex genome structure. Genes Genom 34, 467–474 (2012). https://doi.org/10.1007/s13258-011-0238-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-011-0238-3

Keywords

Navigation