Skip to main content
Log in

Quantifying Simulator Discrepancy in Discrete-Time Dynamical Simulators

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

When making predictions with complex simulators it can be important to quantify the various sources of uncertainty. Errors in the structural specification of the simulator, for example due to missing processes or incorrect mathematical specification, can be a major source of uncertainty, but are often ignored. We introduce a methodology for inferring the discrepancy between the simulator and the system in discrete-time dynamical simulators. We assume a structural form for the discrepancy function, and show how to infer the maximum-likelihood parameter estimates using a particle filter embedded within a Monte Carlo expectation maximization (MCEM) algorithm. We illustrate the method on a conceptual rainfall-runoff simulator (logSPM) used to model the Abercrombie catchment in Australia. We assess the simulator and discrepancy model on the basis of their predictive performance using proper scoring rules. This article has supplementary material online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beven, K. (2006), “A Manifesto for the Equifinality Thesis,” Journal of Hydrology, 320, 18–36.

    Article  Google Scholar 

  • Box, G. E. P., and Cox, D. R. (1964), “An Analysis of Transformations,” Journal of the Royal Statistical Society. Series B. Methodological, 26, 211–252.

    MATH  MathSciNet  Google Scholar 

  • Caffo, B. S., Jank, W., and Jones, G. L. (2005), “Ascent-Based Monte Carlo Expectation-Maximization,” Journal of the Royal Statistical Society. Series B. Methodological, 67 (2), 235–251.

    Article  MATH  MathSciNet  Google Scholar 

  • Conti, S., Gosling, J., Oakley, J., and O’Hagan, A. (2009), “Gaussian Process Emulation of Dynamic Computer Codes,” Biometrika, 96 (34), 663–676.

    Article  MATH  MathSciNet  Google Scholar 

  • Crucifix, M., and Rougier, J. (2009), “On the Use of Simple Dynamical Systems for Climate Predictions,” European Physical Journal, Special Topics, 174, 11–31.

    Article  Google Scholar 

  • Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Likelihood from Incomplete Data Via the EM Algorithm,” Journal of the Royal Statistical Society. Series B. Methodological, 39, 1–38.

    MATH  MathSciNet  Google Scholar 

  • Doucet, A., de Freitas, N., and Gordon, N. (2001), Sequential Monte Carlo Methods in Practice, Berlin: Springer.

    MATH  Google Scholar 

  • Gneiting, T., and Raftery, A. E. (2007), “Strictly Proper Scoring Rules, Prediction, and Estimation,” Journal of the American Statistical Association, 102 (477), 359–378.

    Article  MATH  MathSciNet  Google Scholar 

  • Godsill, S., Doucet, A., and West, M. (2004), “Monte Carlo Smoothing for Nonlinear Time Series,” Journal of the American Statistical Association, 99 (465), 156–168.

    Article  MATH  MathSciNet  Google Scholar 

  • Goldstein, M., and Rougier, J. (2009), “Reified Bayesian Modelling and Inference for Physical Systems” (with discussion), Journal of Statistical Planning and Inference, 139, 1221–1239.

    Article  MATH  MathSciNet  Google Scholar 

  • Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993), “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation,” IEE Proceedings. Part F. Radar and Signal Processing, 140, 107–113.

    Article  Google Scholar 

  • Griffith, A. K., and Nichols, N. K. (2000), “Adjoint Techniques in Data Assimilation for Estimating Model Error,” Flow, Turbulence and Combustion, 65, 469–488.

    Article  MATH  Google Scholar 

  • Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008), “Computer Model Calibration Using High-Dimensional Output,” Journal of the American Statistical Association, 103, 570–583.

    Article  MATH  MathSciNet  Google Scholar 

  • House, L., Goldstein, M., and Rougier, J. (2008), “Assessing Model Discrepancy Using a Multi-model Ensemble,” MUCM Technical Report 08/07, Durham University and University of Bristol.

  • Jolliffe, I. T., and Stephenson, D. B. (2003), Forecast Verification: A Practitioner’s Guide in Atmospheric Science, Chichester: Wiley and Sons.

    Google Scholar 

  • Kavetski, D., Kuczera, G., and Franks, S. W. (2003), “Semi-distributed Hydrological Modelling: a ‘Saturation Path’ Perspective on TOPMODEL and VIC,” Water Resources Research, 39, 1246–1253.

    Article  Google Scholar 

  • Kennedy, M. C., and O’Hagan, A. (2001), “A Bayesian Calibration of Computer Models” (with discussion), Journal of the Royal Statistical Society. Series B. Methodological, 63, 425–464.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuczera, G., Kavetski, D., Franks, S., and Thyer, M. (2006), “Towards a Bayesian Total Error Analysis of Conceptual Rainfall-Runoff Models: Characterising Model Error Using Storm-Dependent Parameters,” Journal of Hydrology, 331, 161–177.

    Article  Google Scholar 

  • Meng, X. L., and Rubin, D. B. (1991), “Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm,” Journal of the American Statistical Association, 86, 899–909.

    Article  Google Scholar 

  • Nash, J. E., and Sutcliffe, J. V. (1970), “River Flow Forecasting Through Conceptual Models Part I—A Discussion of Principles,” Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Oakley, J. E., and O’Hagan, A. (2002), “Bayesian Inference for the Uncertainty Distribution of Computer Model Outputs,” Biometrika, 89, 769–784.

    Article  Google Scholar 

  • Oberkampf, W. L., and Trucano, T. G. (2008), “Verification and Validation Benchmarks,” Nuclear Engineering and Design, 238, 716–743.

    Google Scholar 

  • Reichert, P., and Mieleitner, J. (2009), “Analyzing Input and Structural Uncertainty of Nonlinear Dynamic Models With Stochastic Time-Dependent Parameters,” Water Resources Research, 45, 1–19.

    Article  Google Scholar 

  • Saltelli, A., Chan, K., and Scott, M. (eds.) (2000), Sensitivity Analysis, New York: Wiley.

    MATH  Google Scholar 

  • Shmueli, G. (2010), “To Explain or to Predict?” Statistical Science, 25 (3), 289–310.

    Article  MathSciNet  Google Scholar 

  • Smith, R., Tebaldi, C., Nychka, D., and Mearns, L. (2009), “Bayesian Modeling of Uncertainty in Ensembles of Climate Models,” Journal of the American Statistical Association, 104, 97–116.

    Article  MathSciNet  Google Scholar 

  • Strong, M., Oakley, J. E., and Chilcott, J. (2011), “Managing Structural Uncertainty in Health Economic Decision Models: A Discrepancy Approach,” Journal of the Royal Statistical Society. Series C, Applied Statistics. doi:10.1111/j.1467-9876.2011.01014.x.

  • Vernon, I. R., Goldstein, M., and Bower, R. G. (2010), “Galaxy Formation: A Bayesian Uncertainty Analysis,” Bayesian Analysis, 5, 619–670.

    Article  MathSciNet  Google Scholar 

  • Wei, G. C. G., and Tanner, M. A. (1990), “A Monte Carlo Implementation of the EM Algorithm and the Poor Man’s Data Augmentation Algorithms,” Journal of the American Statistical Association, 85 (411), 699–704.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Wilkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, R.D., Vrettas, M., Cornford, D. et al. Quantifying Simulator Discrepancy in Discrete-Time Dynamical Simulators. JABES 16, 554–570 (2011). https://doi.org/10.1007/s13253-011-0077-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-011-0077-3

Key Words

Navigation