Skip to main content
Log in

Initial experiments with gel-water: towards MRI-linac dosimetry and imaging

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Tracking the position of a moving radiation detector in time and space during data acquisition can replicate 4D image-guided radiotherapy (4DIGRT). Magnetic resonance imaging (MRI)-linacs need MRI-visible detectors to achieve this, however, imaging solid phantoms is an issue. Hence, gel-water, a material that provides signal for MRI-visibility, and which will in future work, replace solid water for an MRI-linac 4DIGRT quality assurance tool, is discussed. MR and CT images of gel-water were acquired for visualisation and electron density verification. Characterisation of gel-water at 0 T was compared to Gammex-RMI solid water, using MagicPlate-512 (M512) and RMI Attix chamber; this included percentage depth dose, tissue-phantom ratio (TPR20/10), tissue-maximum ratio (TMR), profiles, output factors, and a gamma analysis to investigate field penumbral differences. MR images of a non-powered detector in gel-water demonstrated detector visualisation. The CT-determined gel-water electron density agreed with the calculated value of 1.01. Gel-water depth dose data demonstrated a maximum deviation of 0.7% from solid water for M512 and 2.4% for the Attix chamber, and by 2.1% for TPR20/10 and 1.0% for TMR. FWHM and output factor differences between materials were ≤0.3 and ≤1.4%. M512 data passed gamma analysis with 100% within 2%, 2 mm tolerance for multileaf collimator defined fields. Gel-water was shown to be tissue-equivalent for dosimetry and a feasible option to replace solid water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jaffray DA, Carlone MC, Milosevic MF, Breen SL, Stanescu T, Rink A, Alasti H, Simeonov A, Sweitzer MC, Winter JD (2014) A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol 24(3):193–195. doi:10.1016/j.semradonc.2014.02.012

    Article  PubMed  Google Scholar 

  2. Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 24(3):196–199. doi:10.1016/j.semradonc.2014.02.008

    Article  PubMed  Google Scholar 

  3. Fallone BG (2014) The rotating biplanar linac-magnetic resonance imaging system. Semin Radiat Oncol 24(3):200–202. doi:10.1016/j.semradonc.2014.02.011

    Article  PubMed  Google Scholar 

  4. Lagendijk JJW, Raaymakers BW, van Vulpen M (2014) The magnetic resonance imaging–linac system. Semin Radiat Oncol 24(3):207–209. doi:10.1016/j.semradonc.2014.02.009

    Article  PubMed  Google Scholar 

  5. Keall PJ, Barton M, Crozier S (2014) The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol 24(3):203–206. doi:10.1016/j.semradonc.2014.02.015

    Article  PubMed  Google Scholar 

  6. Ménard C, van der Heide U (2014) Introduction: systems for magnetic resonance image guided radiation therapy. Semin Radiat Oncol 24(3):192. doi:10.1016/j.semradonc.2014.02.010

    Article  PubMed  Google Scholar 

  7. Lagendijk JJ, Raaymakers BW, Van den Berg CA, Moerland MA, Philippens ME, van Vulpen M (2014) MR guidance in radiotherapy. Phys Med Biol 59(21):R349–R369. doi:10.1088/0031-9155/59/21/R349

    Article  PubMed  Google Scholar 

  8. Ng JA, Booth JT, Poulsen PR, Fledelius W, Worm ES, Eade T, Hegi F, Kneebone A, Kuncic Z, Keall PJ (2012) Kilovoltage intrafraction monitoring for prostate intensity modulated arc therapy: first clinical results. Int J Radiat Oncol Biol Phys 84(5):e655–e661. doi:10.1016/j.ijrobp.2012.07.2367

    Article  PubMed  Google Scholar 

  9. Fassi A, Schaerer J, Riboldi M, Sarrut D, Baroni G (2015) An image-based method to synchronize cone-beam CT and optical surface tracking. J Appl Clin Med Phys 16(2):117–128. doi:10.1120/jacmp.v16i2.5152

    Google Scholar 

  10. Rozario T, Bereg S, Yan Y, Chiu T, Liu H, Kearney V, Jiang L, Mao W (2015) An accurate algorithm to match imperfectly matched images for lung tumor detection without markers. J Appl Clin Med Phys 16(3):131–140. doi:10.1120/jacmp.v16i3.5200

    Google Scholar 

  11. Petasecca M, Newall MK, Booth JT, Duncan M, Aldosari AH, Fuduli I, Espinoza AA, Porumb CS, Guatelli S, Metcalfe P, Colvill E, Cammarano D, Carolan M, Oborn B, Lerch MLF, Perevertaylo V, Keall PJ, Rosenfeld AB (2015) MagicPlate-512: a 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy. Med Phys 42(6):2992–3004. doi:10.1118/1.4921126

    Article  CAS  PubMed  Google Scholar 

  12. Liney G (2011) MRI from A to Z: a definitive guide for medical professionals, 2nd edn. Springer, London

    Book  Google Scholar 

  13. Metcalfe P, Kron T, Hoban P (2007) The physics of radiotherapy X-rays and electrons. Medical Physics Publishing, Madison

    Google Scholar 

  14. Culjat MO, Goldenberg D, Tewari P, Singh RS (2010) A review of tissue substitutes for ultrasound imaging. Ultrasound Med Biol 36(6):861–873. doi:10.1016/j.ultrasmedbio.2010.02.012

    Article  PubMed  Google Scholar 

  15. McCullough EC, Holmes TW (1985) Acceptance testing computerized radiation therapy treatment planning systems: direct utilization of CT scan data. Med Phys 12(2):237–242. doi:10.1118/1.595713

    Article  CAS  PubMed  Google Scholar 

  16. Constantinou C, Attix FH, Paliwal BR (1982) A solid water phantom material for radiotherapy x-ray and gamma-ray beam calibrations. Med Phys 9(3):436–441. doi:10.1118/1.595063

    Article  CAS  PubMed  Google Scholar 

  17. White DR (1978) Tissue substitutes in experimental radiation physics. Med Phys 5(6):467–479. doi:10.1118/1.594456

    Article  CAS  PubMed  Google Scholar 

  18. Henson PW (1989) Determination of electron density, mass density and calcium fraction by mass of soft and osseous tissues by dual energy CT. Australas Phys Eng Sci Med 12(1):3–10

    CAS  PubMed  Google Scholar 

  19. Aldosari AH, Petasecca M, Espinoza A, Newall M, Fuduli I, Porumb C, Alshaikh S, Alrowaili ZA, Weaver M, Metcalfe P, Carolan M, Lerch ML, Perevertaylo V, Rosenfeld AB (2014) A two dimensional silicon detectors array for quality assurance in stereotactic radiotherapy: MagicPlate-512. Med Phys 41(9):091707-091701-091710. doi:10.1118/1.4892384

  20. Smit K, van Asselen B, Kok JGM, Aalbers AHL, Lagendijk JJW, Raaymakers BW (2013) Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading. Phys Med Biol 58(17):5945–5957. doi:10.1088/0031-9155/58/17/5945

    Article  CAS  PubMed  Google Scholar 

  21. Gargett M, Oborn B, Metcalfe P, Rosenfeld A (2015) Monte Carlo simulation of a novel 2D silicon diode array for use in hybrid MRI-linac systems. Med Phys 42(2):856–865. doi:10.1118/1.4905108

    Article  PubMed  Google Scholar 

  22. Reynolds M, Fallone BG, Rathee S (2014) Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields. Med Phys 41(9):092103-092101-092112. doi:10.1118/1.4893276

  23. Fuduli I, Porumb C, Espinoza AA, Aldosari AH, Carolan M, Lerch MLF, Metcalfe P, Rosenfeld AB, Petasecca M (2014) A comparative analysis of multichannel data acquisition systems for quality assurance in external beam radiation therapy. J Instrum 9(6):1–12. doi:10.1088/1748-0221/9/06/T06003

    Article  Google Scholar 

  24. Wong JH, Fuduli I, Carolan M, Petasecca M, Lerch ML, Perevertaylo VL, Metcalfe P, Rosenfeld AB (2012) Characterization of a novel two dimensional diode array the “magic plate” as a radiation detector for radiation therapy treatment. Med Phys 39(5):2544–2558. doi:10.1118/1.3700234

    Article  CAS  PubMed  Google Scholar 

  25. Gerbi BJ, Khan FM (1997) Plane-parallel ionization chamber response in the buildup region of obliquely incident photon beams. Med Phys 24(6):873–878. doi:10.1118/1.598000

    Article  CAS  PubMed  Google Scholar 

  26. Gerbi BJ (1993) The response characteristics of a newly designed plane-parallel ionization chamber in high-energy photon and electron beams. Med Phys 20(5):1411–1415. doi:10.1118/1.597105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mark Devlin, President and CEO of Computerized Imaging Reference Systems, Inc. (CIRS), for provision of the gel-water phantoms for this study. The authors would also like to acknowledge the NHMRC Program Grant (application ID APP1036078), NHMRC Project Grant (ID 1029432), ARC Discovery Grant (DP 110104007) and Australian Cancer Research Foundation Grant. The author S. A. receives scholarship support from Liverpool and Macarthur Cancer Therapy Centres Radiation Oncology Trust Fund. The author P. M. wishes to acknowledge financial assistance from the NSW Cancer Institute Clinical Leaders Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Alnaghy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnaghy, S.J., Gargett, M., Liney, G. et al. Initial experiments with gel-water: towards MRI-linac dosimetry and imaging. Australas Phys Eng Sci Med 39, 921–932 (2016). https://doi.org/10.1007/s13246-016-0495-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0495-1

Keywords

Navigation