Skip to main content
Log in

Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Glaucoma is a chronic and irreversible neuro-degenerative disease in which the neuro-retinal nerve that connects the eye to the brain (optic nerve) is progressively damaged and patients suffer from vision loss and blindness. The timely detection and treatment of glaucoma is very crucial to save patient’s vision. Computer aided diagnostic systems are used for automated detection of glaucoma that calculate cup to disc ratio from colored retinal images. In this article, we present a novel method for early and accurate detection of glaucoma. The proposed system consists of preprocessing, optic disc segmentation, extraction of features from optic disc region of interest and classification for detection of glaucoma. The main novelty of the proposed method lies in the formation of a feature vector which consists of spatial and spectral features along with cup to disc ratio, rim to disc ratio and modeling of a novel mediods based classier for accurate detection of glaucoma. The performance of the proposed system is tested using publicly available fundus image databases along with one locally gathered database. Experimental results using a variety of publicly available and local databases demonstrate the superiority of the proposed approach as compared to the competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thylefors B, Negrel AD (1994) The global impact of glaucoma. Bull World Health Organ 72(3):323–326

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Spaeth GL (1981) Appearances of the optic disc in glaucoma: a pathogenetic classification. In: Trans Acad Ophthalmol Symposium on Glaucoma. CV Mosby, St. Louis

  4. Akram MU, Khalid S, Khan SA (2013) Identification and classification of microaneurysms for early detection of diabetic retinopathy. Pattern Recognit (Elsevier) 46(1):107–116

    Article  Google Scholar 

  5. Esmaeilia M, Rabbania H, Dehnavia AM (2012) Automatic optic disk boundary extraction by the use of curvelet transform and deformable variational level set model. Pattern Recognit 45(7):2832–2842

    Article  Google Scholar 

  6. Xua J, Chutatape O, Sung E, Zheng C, Kuan P (2007) Optic disk feature extraction via modified deformable model technique for glaucoma analysis. Pattern Recognit 40(7):2063–2076

    Article  Google Scholar 

  7. Wong DWK, Liu J, Lim JH, Tan NM, Zhang Z, Lu S, Li H, Teo MH, Chan KL, Wong TY (2009) Intelligent fusion of cup-to-disc ratio determination methods for glaucoma detection in ARGALI. In: 31st Annual international conference of the IEEE EMBS Minneapolis, Sept 2–6

  8. Rajendra Acharya U, Dua S, Du X, Vinitha Sree S, Chua CK (2011) Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Trans Inf Technol Biomed 15(3):449–455

    Article  PubMed  Google Scholar 

  9. Zhang Z, Lee BH, Liu J, Wong DWK, Tan NM, Lim JH, Yin F, Huang W, Li H (2010) Optic disc region of interest localization in fundus image for glaucoma detection in ARGALI. In: 5th IEEE conference on industrial electronics and applicationsis

  10. Sagar V, Balasubramanian S, Chandrasekaran V (2007) Automatic detection of anatomical structures in digital fundus retinal images. In: MVA2007 IAPR conference on machine vision applications, pp 483–486

  11. Haleem MS, Han L, van Hemert J, Li B (2013) Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Comput Med Imaging Graph 37(7):581–596

    Article  PubMed  Google Scholar 

  12. Biometrics and medical image/signal anaysis research group(BIOMISA), www.biomisa.org/glaucomadb

  13. Ying H, Zhang M, Liu JC (2007) Fractal-based automatic localization and segmentation of optic disc in retinal images. In: 29th Annual international conference of the IEEE EMBS, pp 4139–4141

  14. Qureshi RJ, Kovacs L, Harangi B, Nagy B, Peto T, Hajdu A (2012) Combining algorithms for automatic detection of optic disc and macula in fundus images. Comput Vis Image Underst 116(1):138–145

    Article  Google Scholar 

  15. Zhang D, Yi Y, Shang X, Peng Y (2012) Optic disc localization by projection with vessel distribution and appearance characteristics. In: 21st international conference on pattern recognition (ICPR 2012), pp 3176–3179

  16. Lupascu CA, Tegolo D, Rosa LD (2008) Automated detection of optic disc location in retinal images. In: 21st IEEE international symposium computer based medical systems (CBMS), pp 17–22

  17. Akram MU, Khan A, Iqbal K, Butt WH (2010) Retinal image: optic disk localization and detection. Image Anal Recognit Lect Notes Comput Sci LNCS 6112:40–49

    Article  Google Scholar 

  18. Youssif AR, Ghalwash AZ, Ghoneim AR (2008) Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans Med Imaging 27(1):11–18

    Article  PubMed  CAS  Google Scholar 

  19. Sekhar S, Nuaimy WA, Nandi AK (2008) Automated localisation of optic disc and fovea in retinal fundus images. In: 16th European signal processing conference (EUSIPCO 2008), Lausanne, Aug 25–29

  20. Aquino A, Arias ME, Marin D (2010) Detecting the Optic Disc Boundary in Digital Fundus Images using morphological, edge detection and feature extraction techniques. IEEE Trans Med Imaging 29:1860–1869

    Article  PubMed  Google Scholar 

  21. Usman A, Abbas S, Akram MU, Nadeem Y (2014) A robust algorithm for optic disc segmentation from colored fundus images. Image Analysis and Recognition, Lecture Notes in Computer Science, LNCS. Springer, Berlin, pp 303–310

    Google Scholar 

  22. Akram MU, Khan SA (2013) Multilayered thresholding-based blood vessel segmentation for screening of diabetic retinopathy. Eng Comput (EWCO) 29(2):165–173

    Article  Google Scholar 

  23. Spaeth GL, Lopes F, Junk AK (2006) Systems for staging the amount of optic nerve damage in glaucoma: a critical review and new material. Surv Ophthalmol 51:293–315

    Article  PubMed  Google Scholar 

  24. Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  25. Spaeth GL (2003) Primary open angle glaucoma. In: Rhee DJ (ed) Glaucoma color atlas and synopsis of clinical ophthalmology, vol 5. McGraw-Hill Professional, New York, pp 204–229

    Google Scholar 

  26. Khalid S (2010) Activity classification and anomaly detection using m-Mediods based modeling of motion patterns. Pattern Recognit 43(10):3636–3647

    Article  Google Scholar 

  27. Lalonde M, Gagnon L, Boucher MC (2000) Non-recursive paired tracking for vessel extraction from retinal images. Vis Interface 2000:61–68

    Google Scholar 

  28. Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22(8):951–958

    Article  PubMed  Google Scholar 

  29. Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Klviinen H, Pietil J (2006) DIARETDB1 diabetic retinopathy database and evaluation protocol. Technical Report

  30. Carmona EJ, Rincón M, García-Feijoo J, Martínez-de-la-Casa JM (2008) Identification of the optic nerve head with genetic algorithms. Artif Intell Med 43(3):243–259

    Article  PubMed  Google Scholar 

  31. Giancardo L, Meriaudeau F, Karnowski T, Li Y, Garg S, Tobin KW Jr, Chaum E (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 16(1):216–226

    Article  PubMed  Google Scholar 

  32. MESSIDOR, http://messidor.crihan.fr/index-en.php

  33. Khler T, Budai A, Kraus M, Odstrcilik J, Michelson G, Hornegger J (2013) Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In: 26th IEEE internatioal symposium on computer-based medical systems, Porto

  34. Khalid S, Arshad S (2013) A robust ensemble based approach to combine heterogeneous classifiers in the presence of class label noise. In: IEEE 5th international conference on computational intelligence, communication system and networks, Seoul, pp 24–26. September, 2013

Download references

Acknowledgments

This research is funded by National ICT R&D fund, Pakistan. We are also thankful to armed forces institute of ophthalmology (AFIO) for their clinical support and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Usman Akram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, M.U., Tariq, A., Khalid, S. et al. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques. Australas Phys Eng Sci Med 38, 643–655 (2015). https://doi.org/10.1007/s13246-015-0377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0377-y

Keywords

Navigation