Skip to main content
Log in

Evaluation of respiratory pattern during respiratory-gated radiotherapy

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD res

piratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bortfeld T, Jiang SB, Rietzel E (2004) Effects of motion on the total dose distribution. Semin Radiat Oncol 14(1):41–51

    Article  PubMed  Google Scholar 

  2. Juhler Nottrup T, Korreman SS, Pedersen AN et al (2007) Intra- and interfraction breathing variations during curative radiotherapy for lung cancer. Radiother Oncol 84(1):40–48

    Article  PubMed  Google Scholar 

  3. Furukawa T, Inaniwa T, Sato S et al (2007) Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med Phys 34(3):1085–1097

    Article  CAS  PubMed  Google Scholar 

  4. Mori S, Yanagi T, Hara R et al (2010) Comparison of respiratory-gated and respiratory-ungated planning in scattered carbon ion beam treatment of the pancreas using four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 76(1):303–312

    Article  PubMed  Google Scholar 

  5. Mori S, Kanematsu N, Asakura H et al (2011) Four-dimensional lung treatment planning in layer-stacking carbon ion beam treatment: comparison of layer-stacking and conventional ungated/gated irradiation. Int J Radiat Oncol Biol Phys 80(2):597–607

    Article  PubMed  Google Scholar 

  6. Chen GT, Kung JH, Beaudette KP (2004) Artifacts in computed tomography scanning of moving objects. Semin Radiat Oncol 14(1):19–26

    Article  PubMed  Google Scholar 

  7. Mah D, Hanley J, Rosenzweig KE et al (2000) Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 48(4):1175–1185

    Article  CAS  PubMed  Google Scholar 

  8. Keall PJ, Joshi S, Vedam SS et al (2005) Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys 32(4):942–951

    Article  PubMed  Google Scholar 

  9. Keall PJ, Cattell H, Pokhrel D et al (2006) Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system. Int J Radiat Oncol Biol Phys 65(5):1579–1584

    Article  PubMed  Google Scholar 

  10. D’Souza WD, Naqvi SA, Yu CX (2005) Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Phys Med Biol 50(17):4021–4033

    Article  PubMed  Google Scholar 

  11. Shirato H, Shimizu S, Kitamura K et al (2000) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48(2):435–442

    Article  CAS  PubMed  Google Scholar 

  12. Berbeco RI, Jiang SB, Sharp GC et al (2004) Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors. Phys Med Biol 49(2):243–255

    Article  PubMed  Google Scholar 

  13. Schweikard A, Shiomi H, Adler J (2004) Respiration tracking in radiosurgery. Med Phys 31(10):2738–2741

    Article  PubMed  Google Scholar 

  14. Mori S, Shirai T, Takei Y et al (2012) Patient handling system for carbon-ion beam scanning therapy. J Appl Clin Med Phys 13(6):3926

    PubMed  Google Scholar 

  15. Rietzel E, Bert C (2010) Respiratory motion management in particle therapy. Med Phys 37(2):449–460

    Article  PubMed  Google Scholar 

  16. Bert C, Durante M (2011) Motion in radiotherapy: particle therapy. Phys Med Biol 56(16):R113–R144

    Article  CAS  PubMed  Google Scholar 

  17. Phillips MH, Pedroni E, Blattmann H et al (1992) Effects of respiratory motion on dose uniformity with a charged particle scanning method. Phys Med Biol 37(1):223–234

    Article  CAS  PubMed  Google Scholar 

  18. Minohara S, Kanai T, Endo M et al (2000) Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47(4):1097–1103

    Article  CAS  PubMed  Google Scholar 

  19. Keall PJ, Mageras GS, Balter JM et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900

    Article  PubMed  Google Scholar 

  20. Seppenwoolde Y, Shirato H, Kitamura K et al (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53(4):822–834

    Article  PubMed  Google Scholar 

  21. Berbeco RI, Nishioka S, Shirato H et al (2005) Residual motion of lung tumours in gated radiotherapy with external respiratory surrogates. Phys Med Biol 50(16):3655–3667

    Article  PubMed  Google Scholar 

  22. Wu H, Sharp GC, Zhao Q et al (2007) Statistical analysis and correlation discovery of tumor respiratory motion. Phys Med Biol 52(16):4761–4774

    Article  PubMed  Google Scholar 

  23. Suh Y, Dieterich S, Cho B et al (2008) An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients. Phys Med Biol 53(13):3623–3640

    Article  PubMed  Google Scholar 

  24. Zhao B, Yang Y, Li T et al (2011) Statistical analysis of target motion in gated lung stereotactic body radiation therapy. Phys Med Biol 56(5):1385–1395

    Article  PubMed  Google Scholar 

  25. Mageras GS, Yorke E, Rosenzweig K et al (2001) Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J Appl Clin Med Phys 2(4):191–200

    Article  CAS  PubMed  Google Scholar 

  26. Vedam SS, Kini VR, Keall PJ et al (2003) Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys 30(4):505–513

    Article  CAS  PubMed  Google Scholar 

  27. Ahn S, Yi B, Suh Y et al (2004) A feasibility study on the prediction of tumour location in the lung from skin motion. Br J Radiol 77(919):588–596

    Article  CAS  PubMed  Google Scholar 

  28. Ozhasoglu C, Murphy MJ (2002) Issues in respiratory motion compensation during external-beam radiotherapy. Int J Radiat Oncol Biol Phys 52(5):1389–1399

    Article  PubMed  Google Scholar 

  29. Tsunashima Y, Sakae T, Shioyama Y et al (2004) Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy. Int J Radiat Oncol Biol Phys 60(3):951–958

    Article  PubMed  Google Scholar 

  30. Hoisak JD, Sixel KE, Tirona R et al (2004) Correlation of lung tumor motion with external surrogate indicators of respiration. Int J Radiat Oncol Biol Phys 60(4):1298–1306

    Article  PubMed  Google Scholar 

  31. Ionascu D, Jiang SB, Nishioka S et al (2007) Internal-external correlation investigations of respiratory induced motion of lung tumors. Med Phys 34(10):3893–3903

    Article  PubMed  Google Scholar 

  32. Korreman SS, Juhler-Nottrup T, Boyer AL (2008) Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance. Radiother Oncol 86(1):61–68

    Article  PubMed  Google Scholar 

  33. Malinowski K, McAvoy TJ, George R et al (2012) Incidence of changes in respiration-induced tumor motion and its relationship with respiratory surrogates during individual treatment fractions. Int J Radiat Oncol Biol Phys 82(5):1665–1673

    Article  CAS  PubMed  Google Scholar 

  34. Mori S, Endo M, Komatsu S et al (2007) Four-dimensional measurement of lung tumor displacement using 256-multi-slice CT-scanner. Lung Cancer 56(1):59–67

    Article  PubMed  Google Scholar 

  35. Saw CB, Brandner E, Selvaraj R et al (2007) A review on the clinical implementation of respiratory-gated radiation therapy. Biomed Imaging Interv J 3(1):e40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tobin MJ, Chadha TS, Jenouri G et al (1983) Breathing patterns. 1. Normal subjects. Chest 84(2):202–205

    Article  CAS  PubMed  Google Scholar 

  37. Dobashi S, Sugane T, Mori S et al (2011) Intrafractional respiratory motion for charged particle lung therapy with immobilization assessed by four-dimensional computed tomography. J Radiat Res 52(1):96–102

    Article  PubMed  Google Scholar 

  38. Ford EC, Mageras GS, Yorke E et al (2002) Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging. Int J Radiat Oncol Biol Phys 52(2):522–531

    Article  CAS  PubMed  Google Scholar 

  39. Kubo HD, Wang L (2002) Introduction of audio gating to further reduce organ motion in breathing synchronized radiotherapy. Med Phys 29(3):345–350

    Article  PubMed  Google Scholar 

  40. Tobin MJ, Chadha TS, Jenouri G et al (1983) Breathing patterns. 2. Diseased subjects. Chest 84(3):286–294

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Xu GX, Shi C et al (2008) Development of a geometry-based respiratory motion-simulating patient model for radiation treatment dosimetry. J Appl Clin Med Phys 9(1):2700

    PubMed Central  PubMed  Google Scholar 

  42. McGurk R, Seco J, Riboldi M et al (2010) Extension of the NCAT phantom for the investigation of intra-fraction respiratory motion in IMRT using 4D Monte Carlo. Phys Med Biol 55(5):1475–1490

    Article  PubMed  Google Scholar 

  43. Guo B, Xu XG, Shi C (2011) Real time 4D IMRT treatment planning based on a dynamic virtual patient model: proof of concept. Med Phys 38(5):2639–2650

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44(4):911–919

    Article  CAS  PubMed  Google Scholar 

  45. George R, Chung TD, Vedam SS et al (2006) Audio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int J Radiat Oncol Biol Phys 65(3):924–933

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the clinical staff at the HIMAC of the National Institute of Radiological Sciences for their support.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Mori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobashi, S., Mori, S. Evaluation of respiratory pattern during respiratory-gated radiotherapy. Australas Phys Eng Sci Med 37, 731–742 (2014). https://doi.org/10.1007/s13246-014-0310-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0310-9

Keywords

Navigation