Skip to main content
Log in

Effect of voxel size when calculating patient specific radionuclide dosimetry estimates using direct Monte Carlo simulation

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The scalable XCAT voxelised phantom was used with the GATE Monte Carlo toolkit to investigate the effect of voxel size on dosimetry estimates of internally distributed radionuclide calculated using direct Monte Carlo simulation. A uniformly distributed Fluorine-18 source was simulated in the Kidneys of the XCAT phantom with the organ self dose (kidney ← kidney) and organ cross dose (liver ← kidney) being calculated for a number of organ and voxel sizes. Patient specific dose factors (DF) from a clinically acquired FDG PET/CT study have also been calculated for kidney self dose and liver ← kidney cross dose. Using the XCAT phantom it was found that significantly small voxel sizes are required to achieve accurate calculation of organ self dose. It has also been used to show that a voxel size of 2 mm or less is suitable for accurate calculations of organ cross dose. To compensate for insufficient voxel sampling a correction factor is proposed. This correction factor is applied to the patient specific dose factors calculated with the native voxel size of the PET/CT study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Denis-Bacelar AM, Romanchikova M, Chittenden S, Saran FH, Mandeville H, Du Y, Flux GD (2013) Patient-specific dosimetry for intracavitary 32p-chromic phosphate colloid therapy of cystic brain tumours. Eur J Nucl Med Mol Imag 40:1532–1541

    Article  CAS  Google Scholar 

  2. Zankl M, Petoussi-Henss N, Fill U, Regulla D (2003) The application of voxel phantoms to the internal dosimetry of radionuclides. Radiat Protect Dosim 105(1–4):539

    Article  CAS  Google Scholar 

  3. Segars W, Tsui B (2009) Mcat to xcat: the evolution of 4-d computerized phantoms for imaging research. Proc IEEE 97(12):1954–1968

    Article  Google Scholar 

  4. Piegl L (1991) On nurbs: a survey. Comput Graph Appl 11(1):55–71

    Article  Google Scholar 

  5. Stabin M, Sparks R, Crowe E (2005) Olinda/exm: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46(6):1023

    PubMed  Google Scholar 

  6. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardiès M, Bloomfield PM et al (2004) Gate: a simulation toolkit for pet and spect. Phys Med Biol 49:4543–4561

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G et al (2003) Geant4-a simulation toolkit. Nucl Instrum Method Phys Res Sect A 506(3):250–303

    Article  CAS  Google Scholar 

  8. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardiès M, Bloomfield PM, et al. (2007) GATE users guide. http://www.opengatecollaboration.org

  9. Loevinger R, Budinger T, Watson E (1988) Mird primer for absorbed dose calculations. The Society of Nuclear Medicine, New York

    Google Scholar 

  10. Stabin M, Siegel J, Sparks R, Eckerman K, Breitz H (2001) Contribution to red marrow absorbed dose from total body activity: a correction to the Mird method. J Nucl Med 42(3):492

    PubMed  CAS  Google Scholar 

  11. Williams L, Liu A, Yamauchi D, Lopatin G, Raubitschek A, Wong J (2002) The two types of correction of absorbed dose estimates for internal emitters. Cancer 94(S4):1231–1234

    Article  PubMed  Google Scholar 

  12. Howell R, Wessels B, Loevinger R, Watson E, Bolch W, Brill A, Charkes N, Fisher D, Hays M, Robertson J et al (1999) The Mird perspective 1999. Medical internal radiation dose committee. J Nucl Med 40(1):3S–10S

    PubMed  CAS  Google Scholar 

  13. Cloutier RJ, Edwards CL, Snyder WS (1970) Medical radionuclides: radiation dose and effects. J Radiat Biol 18(4):399

    Google Scholar 

  14. Browne J, De Pierro A (1996) A row-action alternative to the em algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imag 15(5):687–699

    Article  CAS  Google Scholar 

  15. Saunder T (2006) Wasabi, medical image quantitative analysis and visualisation package. http://wasabi.petnm.unimelb.edu.au/index.html

  16. Snyder W, Ford M, Warner G, Watson S (1975) S”: absorbed dose per unit cumulated activity for selected radionuclides and organs. Mird pamphlet no. 11. Society of Nuclear Medicine, New York

  17. Stabin M (1996) Mirdose: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37(3):538

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the assistance of staff from the Victorian Partnership for Advanced Computing. We would also like to acknowledge the assistance of Dr. Rick Franich, Dr. Jianfeng He, Mr. Tim Saunder, Mr. Gareth Jones and Dr. Sylvia J Gong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Hickson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickson, K.J., O’Keefe, G.J. Effect of voxel size when calculating patient specific radionuclide dosimetry estimates using direct Monte Carlo simulation. Australas Phys Eng Sci Med 37, 495–503 (2014). https://doi.org/10.1007/s13246-014-0277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0277-6

Keywords

Navigation