Skip to main content

Advertisement

Log in

Radiation dose reduction with dictionary learning based processing for head CT

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In CT, ionizing radiation exposure from the scan has attracted much concern from patients and doctors. This work is aimed at improving head CT images from low-dose scans by using a fast Dictionary learning (DL) based post-processing. Both Low-dose CT (LDCT) and Standard-dose CT (SDCT) nonenhanced head images were acquired in head examination from a multi-detector row Siemens Somatom Sensation 16 CT scanner. One hundred patients were involved in the experiments. Two groups of LDCT images were acquired with 50 % (LDCT50 %) and 25 % (LDCT25 %) tube current setting in SDCT. To give quantitative evaluation, Signal to noise ratio (SNR) and Contrast to noise ratio (CNR) were computed from the Hounsfield unit (HU) measurements of GM, WM and CSF tissues. A blinded qualitative analysis was also performed to assess the processed LDCT datasets. Fifty and seventy five percent dose reductions are obtained for the two LDCT groups (LDCT50 %, 1.15 ± 0.1 mSv; LDCT25 %, 0.58 ± 0.1 mSv; SDCT, 2.32 ± 0.1 mSv; P < 0.001). Significant SNR increase over the original LDCT images is observed in the processed LDCT images for all the GM, WM and CSF tissues. Significant GM–WM CNR enhancement is noted in the DL processed LDCT images. Higher SNR and CNR than the reference SDCT images can even be achieved in the processed LDCT50 % and LDCT25 % images. Blinded qualitative review validates the perceptual improvements brought by the proposed approach. Compared to the original LDCT images, the application of DL processing in head CT is associated with a significant improvement of image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LDCT:

Low-dose CT

SDCT:

Standard-dose CT

DL:

Dictionary learning

K-SVD:

K-means singular value decomposition

SD:

Standard deviation

SNR:

Signal to noise ratio

CNR:

Contrast to noise ratio

CTDIvol :

Volume CT dose index

DLP:

Dose length product

ED:

Effective dose

FBP:

Filtered back-projection

mA:

Milliampere

mAs:

Milliampere second

HU:

Hounsfield unit

ASIR:

Adaptive statistical iterative reconstruction

PICCS:

Prior image constrained compressed sensing

ROI:

Region of interest

References

  1. Patient safety: Radiation dose in X-ray and CT Exams. http://www.radiologyinfo.org/en/safety/index.cfm?pg=sfty_xray. Accessed August 22, 2012

  2. Kak AC, Slaney M (2001) Principles of Computerized Tomographic Imaging. SIAM, Philadelphia

    Book  Google Scholar 

  3. Brenner DJ, Hall EJ (2007) Computed tomography-an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  4. Smith-Bindman R, Lipson J, Marcus R et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169:2078–2086

    Article  PubMed  Google Scholar 

  5. Kalra MK, Michael MM et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  PubMed  Google Scholar 

  6. Yazdi M, Beaulieu L (2008) Artifacts in spiral x-ray CT scanners: problems and solutions. Int J Biol Med Sci 4:135–139

    Google Scholar 

  7. Xu J, Mahesh M, Tsui BM (2009) Is iterative reconstruction ready for MDCT? J Am Coll Radiol 6:274–276

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thibault JB, Sauer K, Bouman C et al (2007) A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34:4526–4544

    Article  PubMed  Google Scholar 

  9. Sidky E, Pan X (2008) Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53:4777–4807

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen Y, Feng Q, Luo L et al (2008) Nonlocal prior bayesian tomographic reconstruction. J Math Imaging Vis 30:133–146

    Article  CAS  Google Scholar 

  11. Chen Y, Luo L, Chen W et al (2009) Bayesian statistical reconstruction for low-dose x-ray computed tomography using an adaptive-weighting nonlocal prior. Comput Med Imaging Graph 33:495–500

    Article  PubMed  Google Scholar 

  12. Lubner M, Pickhardt P, Tang J et al (2011) Reduced image noise at low-dose multidetector CT of the abdomen with prior image constrained compressed sensing algorithm. Radiology 260:248–256

    Article  PubMed  Google Scholar 

  13. Silva A, Lawder H, Hara A et al (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. Am J Roentgenol 194:191–199

    Article  Google Scholar 

  14. Rapalino O, Kamalian S et al (2012) Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction. Am J Neuroradiol 33:609–615

    Article  PubMed  CAS  Google Scholar 

  15. Kilic K, Erbas G, Guryildirim M et al (2011) Lowering the dose in head CT using adaptive statistical iterative reconstruction. Am J Neuroradiol 32:1578–1582

    Article  PubMed  CAS  Google Scholar 

  16. Korn A, Fenchel M, Bender B et al (2012) Iterative reconstruction in head CT: image quality of routine and low-dose protocols in comparison with standard filtered back-projection. Am J Neuroradiol 33:218–224

    Article  PubMed  CAS  Google Scholar 

  17. Wu TH, Hung SC, Sun JY et al (2013) How far can the radiation dose be lowered in head CT with iterative reconstruction? analysis of imaging quality and diagnostic accuracy. Eur Radiol. doi:10.1007/s00330-013-2846-6

    Google Scholar 

  18. Leipsic J, Nguyen G, Brown J et al (2010) A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol 195:1095–1099

    Article  PubMed  Google Scholar 

  19. Singh S, Kalra M, Hsieh J et al (2010) Abdominal CT, comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383

    Article  PubMed  Google Scholar 

  20. Lewic MS, Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609

    Article  Google Scholar 

  21. Lewicki MS, Sejnowski TJ (2000) Learning overcomplete representations. Neural Comput 12:337–365

    Article  PubMed  CAS  Google Scholar 

  22. Delgado KK, Murray JF et al (2003) Dictionary learning algorithms for sparse representation. Neural Comput 15:349–396

    Article  Google Scholar 

  23. Donoho DL, Elad D (2003) Maximal sparsity representation via l1 minimization. Proc Natl Acad Sci 100:2197–2202

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15:3736–3745

    Article  PubMed  Google Scholar 

  25. Mairal J, Elad M, Sapiro G (2007) Sparse representation for color image restoration. IEEE Trans Image Process 17:53–69

    Article  Google Scholar 

  26. Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model Sim 7:214–241

    Article  Google Scholar 

  27. Wright J, Yang AY, Ganesh A et al (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227

    Article  Google Scholar 

  28. Ravishankar S, Bresler Y (2011) MR image reconstruction from highly under sampled k-space data by dictionary learning. IEEE Trans Med Imaging 30:1028–1041

    Article  PubMed  Google Scholar 

  29. Ma L, Moisan L, Yu J et al (2013) A Dictionary learning approach for Poisson image deblurring. IEEE Trans Med Imaging 32:1277–1289

    Article  PubMed  Google Scholar 

  30. Yu H, Wang G (2009) Compressed sensing based interior tomography. Phys Med Biol 54:2791–2805

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu Q, Yu H, Mou X et al (2012) Low-Dose X-ray CT Reconstruction via Dictionary Learning. IEEE Trans Med Imaging 31:1682–1697

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li S, Fang L, Yin H (2012) An efficient dictionary learning algorithm and its application to 3-D medical image denoising. IEEE Trans Biomed Eng 59:417–427

    Article  PubMed  Google Scholar 

  33. Lu Y, Zhao J, Wang G (2012) Few-view image reconstruction with dual dictionaries. Phys Med Biol 57:173–189

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao B, Ding H, Lu Y, Wang G et al (2012) Dual-dictionary learning-based iterative image reconstruction for spectral computed tomography application. Phys Med Biol 57:8217–8229

    Article  PubMed  Google Scholar 

  35. Chen Y, Yin X, Shi L et al (2013) Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys Med Biol 58:5803–5820

    Article  PubMed  Google Scholar 

  36. Heaney DE, Norvill CAJ (2006) A comparison of reduction in CT dose through the use of gantry angulations or bismuth shields. Australas Phys Eng SciMed 29(2):172–178

    Article  CAS  Google Scholar 

  37. Jessen KA, Panzer W, Shrimpton PC, et al.(2000) EUR 16262: European Guidelines on Quality Criteria for Computed Tomography. Paper presented at: Office for Official Publications of the European Communities; Luxembourg

  38. Shrimpton PC, Hillier MC, Lewis MA et al (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79(948):968–980

    Article  PubMed  CAS  Google Scholar 

  39. Hakansson M, Svensson S, Zachrisson S, et al. ViewDEX 2.0: a Java-based DICOM-compatible software for observer performance studies. Proc SPIE 2009; 7263: 72631G1-72631G10

  40. Chen Y, Yang Z, Hu Y et al (2012) Thoracic low-dose CT image processing using an artifact-suppressed large-scale nonlocal means. Phys Med Biol 57:2667–2688

    Article  PubMed  Google Scholar 

  41. Feng Q, Foskey M, Chen W et al (2010) Segmenting CT prostate images using population and patient-specific statistics for radiotherapy. Med Phys 37:4121–4132

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang J, Wang YT, Chen WF et al (2007) Multiresolution elastic registration of x-ray angiography images using thin-plate spline. IEEE Trans Nucl Sci 54:152–166

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Basic Research Program of China (2010CB732503), National Natural Science Foundation (81370040, 31100713), and the Natural Science Foundation of Jiangsu Province (BK2011593), This work was also supported by the Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Shi, L., Yang, J. et al. Radiation dose reduction with dictionary learning based processing for head CT. Australas Phys Eng Sci Med 37, 483–493 (2014). https://doi.org/10.1007/s13246-014-0276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0276-7

Keywords

Navigation