Skip to main content
Log in

Measurement and effects of MOSKIN detectors on skin dose during high energy radiotherapy treatment

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

During in vivo dosimetry for megavoltage X-ray beams, detectors such as diodes, Thermo luminescent dosimeters (TLD’s) and MOSFET devices are placed on the patient’s skin. This of course will affect the skin dose delivered during that fraction of the treatment. Whilst the overall impact on increasing skin dose would be minimal, little has been quantified concerning the level of increase in absorbed dose, in vivo dosimeters produce when placed in the beams path. To this extent, measurements have been made and analysis performed on dose changes caused by MOSKIN, MOSFET, skin dose detectors. Maximum increases in skin dose were measured as 15 % for 6 MV X-rays and 10 % for 10 MV X-rays at the active crystal of the MOSKIN device which is the thickest part of the detector. This is compared to 32 and 26 % for a standard 1 mm thick LiF TLD at 10 × 10 cm2 field size for 6 and 10 MV X-rays respectively. Radiochromic film, EBT2 has been shown to provide a high resolution 2 dimensional map of skin dose from these detectors and measures the effects of in vivo dosimeters used for radiotherapy dose assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Hounsell AR, Wilkinson JM (1999) Electron contamination and build-up doses in conformal radiotherapy fields. Phys Med Biol 44(1):43–55

    Article  PubMed  CAS  Google Scholar 

  2. Butson MJ, Perez MD, Mathur JN, Metcalfe PE (1996) 6 MV X-ray dose in the build up region: empirical model and the incident angle effect. Australas Phys Eng Sci Med 19(2):74–82

    PubMed  CAS  Google Scholar 

  3. Butson MJ, Cheung T, Yu PK (2007) Megavoltage X-ray skin dose variation with angle using grid carbon fibre couch tops. Phys Med Biol 52(20):N485–92 (Epub 2007 Oct 1)

    Google Scholar 

  4. Zhu XR (2000) Entrance dose measurements for in vivo diode dosimetry: comparison of correction factors for two types of commercial silicon diode detectors. J Appl Clin Med Phys 1(3):100–107

    Article  PubMed  CAS  Google Scholar 

  5. Tung CJ, Yu PC, Chiu MC, Yeh CY, Lee CC, Chao TC (2010) Midline dose verification with diode in vivo dosimetry for external photon therapy of head and neck and pelvis cancers during initial large-field treatments. Med Dosim 35(4):304–11 (Epub 2010 Jun 2)

    Google Scholar 

  6. Kron T, Butson M, Hunt F, Denham J (1996) TLD extrapolation for skin dose determination in vivo. Radiother Oncol 41(2):119–123

    Article  PubMed  CAS  Google Scholar 

  7. Butson M, Cheung T, Yu PK, Metcalfe PE (2000) Assessment of large single-fraction, low-energy X-ray dose with radiochromic film. Int J Radiat Oncol Biol Phys 46(4):1071–1075

    Article  PubMed  CAS  Google Scholar 

  8. Butson MJ, Elfernick R, Cheung T, Yu PKN, Stokes MJ, Quach KY, Metcalfe P (2000) Verification of lung dose in an anthropomorphic phantom calculated by the collapsed cone convolution method. Phys Med Biol 45(11):N143–N151

    Article  PubMed  CAS  Google Scholar 

  9. Leal MA, Viegas C, Viamonte A, Campos A, Braz D, Clivland P (2010) Thermoluminescent chip detector for in vivo dosimetry in pelvis and head & neck cancer treatment. Appl Radiat Isot 68(4–5):795–8 (Epub 2009 Dec 21)

    Google Scholar 

  10. Morton JP, Bhat M, Williams T, Kovendy A (2007) Clinical results of entrance dose in vivo dosimetry for high energy photons in external beam radiotherapy using MOSFETs. Australas Phys Eng Sci Med 30(4):252–259

    Article  PubMed  CAS  Google Scholar 

  11. Butson MJ, Cheung T, Yu PK (2005) Peripheral dose measurement with a MOSFET detector. Appl Radiat Isot 62(4):631–634

    Article  PubMed  CAS  Google Scholar 

  12. Cheung T, Butson MJ, Yu PK (2003) MOSFET dosimetry in vivo at superficial and orthovoltage X-ray energies. Australas Phys Eng Sci Med 26(2):82–84

    Article  PubMed  CAS  Google Scholar 

  13. Kwan IS, Rosenfeld AB, Qi ZY, Wilkinson D, Lerch MLF, Cutajar DL, Safavi-Naeni M, Butson M, Bucci JA, Chin Y, Perevertaylo VL (2008) Skin dosimetry with new MOSFET detectors. Radiat Meas 43(2–6):929–932

    Article  CAS  Google Scholar 

  14. Kelly A, Hardcastle N, Metcalfe P, Cutajar D, Quinn A, Foo K, Cardoso M, Barlin S, Rosenfeld A (2011) Surface dosimetry for breast radiotherapy in the presence of immobilization cast material. Phys Med Biol 56(4):1001–13 (Epub 2011 Jan 21)

    Google Scholar 

  15. Damrongkijudom N, Oborn B, Butson M, Rosenfeld A (2006) Measurement and production of electron deflection using a sweeping magnetic device in radiotherapy. Australas Phys Eng Sci Med 29(3):260–266

    Article  PubMed  CAS  Google Scholar 

  16. Damrongkijudom N, Oborn B, Butson M, Rosenfeld A (2006) Measurement of magnetic fields produced by a “magnetic deflector” for the removal of electron contamination in radiotherapy. Australas Phys Eng Sci Med 29(4):321–327

    Article  PubMed  CAS  Google Scholar 

  17. Sikora M, Alber M (2009) A virtual source model of electron contamination of a therapeutic photon beam. Phys Med Biol 54(24):7329–44 (Epub 2009 Nov 20)

    Google Scholar 

  18. Constantinou C, Attix FH (1982) Paliwal BR.A solid water phantom material for radiotherapy X-ray and gamma-ray beam calibrations. Med Phys 9:436–441

    Article  PubMed  CAS  Google Scholar 

  19. Butson MJ, Cheung T, Yu PK, Alnawaf H (2009) Dose and absorption spectra response of EBT2 Gafchromic film to high energy X-rays. Australas Phys Eng Sci Med 32(4):196–202

    Article  PubMed  CAS  Google Scholar 

  20. Butson MJ, Yu PKN, Cheung T, Alnawaf H (2010) Energy response of the new EBT2 radiochromic film to X-ray radiation. Radiat Meas 45:836–839

    Article  CAS  Google Scholar 

  21. Richley L, John AC, Coomber H, Fletcher S (2010) Evaluation and optimization of the new EBT2 radiochromic film dosimetry system for patient dose verification in radiotherapy. Phys Med Biol 55(9):2601–17 (Epub 2010 Apr 14)

    Google Scholar 

  22. Chow JC, Grigorov GN (2008) Surface dosimetry for oblique tangential photon beams: a Monte Carlo simulation study. Med Phys 35(1):70–76

    Article  PubMed  Google Scholar 

  23. Butson M Yu KN, Cheung T, Metcalfe PE (2003) Radiochromic film for medical radiation dosimetry. Mater Sci Eng R 41:61–120

    Google Scholar 

  24. Meigooni AS, Sanders MF, Ibbott GS, Szeglin SR (1996) Dosimetric characteristics of an improved radiochromic film. Med Phys 23(11):1883–1888

    Article  PubMed  CAS  Google Scholar 

  25. Saur S, Frengen J (2008) GafChromic EBT film dosimetry with flatbed CCD scanner: a novel background correction method and full dose uncertainty analysis. Med Phys 35(7):3094–3101

    Article  PubMed  Google Scholar 

  26. ISP CORP (2012) EBT2 Gafchromic film product specifications, Accessed April 10th. http://online1.ispcorp.com/_layouts/Gafchromic/content/products/ebt2/pdfs/EBT2productSpec.pdf. Accessed 10 Apr 2012

  27. Cheung T, Butson MJ, Yu KN (2005) Post irradiation coloration of Gafchromic EBT radiochromic film. Phys Med Biol 50:N281–N285

    Article  PubMed  Google Scholar 

  28. Butson M, Yu P, Metcalfe P (1998) Effects of readout light sources and ambient light on radiochromic film. Phys Med Biol 43:2407–2412

    Article  PubMed  CAS  Google Scholar 

  29. Butson ET, Cheung T, Yu PKN, Butson MJ (2010) Measuring solar UV radiation with EBT radiochromic film. Phys Med Biol 55:N487–N493

    Article  PubMed  Google Scholar 

  30. Butson E, Alnawaf H, Yu PKN, Butson M (2011) Scanner uniformity improvements for radiochromic film analysis with matt reflectance backing. Australas Phys Eng Sci Med 34(3):401–407

    Article  PubMed  Google Scholar 

  31. Butson MJ, Cheung T, Yu PK (2009) Evaluation of the magnitude of EBT Gafchromic film polarization effects. Australas Phys Eng Sci Med 32(1):21–25

    Article  PubMed  CAS  Google Scholar 

  32. Butson MJ, Cheung T, Yu PKN (2006) Scanning orientation effects on EBT Gafchromic film dosimetry. Australas Phys Eng Sci Med 29:281–284

    Article  PubMed  CAS  Google Scholar 

  33. Yu PK, Butson M, Cheung T (2006) Does mechanical pressure on radiochromic film affect optical absorption and dosimetry? Australas Phys Eng Sci Med 29(3):285–287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by a grant from the Research Grants Council of HKSAR, China (Project No. CityU 123810). Hani Alnawaf has been supported by the Saudi Arabian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Butson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alnawaf, H., Butson, M. & Yu, P.K.N. Measurement and effects of MOSKIN detectors on skin dose during high energy radiotherapy treatment. Australas Phys Eng Sci Med 35, 321–328 (2012). https://doi.org/10.1007/s13246-012-0153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0153-1

Keywords

Navigation