Skip to main content
Log in

Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Transitional and turbulent flow through a simplified medical device model is analyzed as part of the FDA’s Critical Path Initiative, designed to improve the process of bringing medical products to market. Computational predictions are often used in the development of devices and reliable in vitro data is needed to validate computational results, particularly estimations of the Reynolds stresses that could play a role in damaging blood elements. The high spatial resolution of laser Doppler velocimetry (LDV) is used to collect two component velocity data within the FDA benchmark nozzle model. Two flow conditions are used to produce flow encompassing laminar, transitional, and turbulent regimes, and viscous stresses, principal Reynolds stresses, and turbulence intensities are calculated from the measured LDV velocities. Axial velocities and viscous stresses are compared to data from a prior inter-laboratory study conducted with particle image velocimetry. Large velocity gradients are observed near the wall in the nozzle throat and in the jet shear layer located in the expansion downstream of the throat, with axial velocity changing as much as 4.5 m/s over 200 μm. Additionally, maximum Reynolds shear stresses of 1000–2000 Pa are calculated in the high shear regions, which are an order of magnitude higher than the peak viscous shear stresses (<100 Pa). It is important to consider the effects of both viscous and turbulent stresses when simulating flow through medical devices. Reynolds stresses above commonly accepted hemolysis thresholds are measured in the nozzle model, indicating that hemolysis may occur under certain flow conditions. As such, the presented turbulence quantities from LDV, which are also available for download at https://fdacfd.nci.nih.gov/, provide an ideal validation test for computational simulations that seek to characterize the flow field and to predict hemolysis within the FDA nozzle geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Armaly, B. F., F. Durst, J. C. Pereira, and B. Schönung. Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127:473–496, 1983.

    Article  Google Scholar 

  2. Aycock, K. I., R. L. Campbell, K. B. Manning, S. P. Sastry, S. M. Shontz, F. C. Lynch, and B. A. Craven. A computational method for predicting inferior vena cava filter performance on a patient-specific basis. J Biomech Eng. 136(8):081003, 2014.

    Article  Google Scholar 

  3. Bachmann, C., G. Hugo, G. Rosenberg, S. Deutsch, A. Fontaine, and J. M. Tarbell. Fluid dynamics of a pediatric ventricular assist device. Artif. Organs. 24(5):362–372, 2000.

    Article  Google Scholar 

  4. Baldwin, J. T., S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. LDA measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle. J. Biomech. Eng. 116(2):190–200, 1994.

    Article  Google Scholar 

  5. Baldwin, J. T., S. Deutsch, H. L. Petrie, and J. M. Tarbell. Determination of principal Reynolds stresses in pulsatile flows after elliptical filtering of discrete velocity measurements. J. Biomech. Eng. 115(4A):396–403, 1993.

    Article  Google Scholar 

  6. Bluestein, D., K. B. Chandran, and K. B. Manning. Towards non-thrombogenic performance of blood recirculating devices. Ann. Biomed. Eng. 38(3):1236–1256, 2010.

    Article  Google Scholar 

  7. Bradshaw, P., D. H. Ferriss, and R. F. Johnson. Turbulence in the noise-producing region of a circular jet. J. Fluid Mech. 19(04):591–624, 1964.

    Article  MATH  Google Scholar 

  8. Browne, P., A. Ramuzat, R. Saxena, and A. P. Yoganathan. Experimental investigation of the steady flow downstream of the St. Jude bileaflet heart valve: a comparison between laser Doppler velocimetry and particle image velocimetry techniques. Ann. Biomed. Eng. 28(1):39–47, 2000.

    Article  Google Scholar 

  9. Burgreen, G. W., J. F. Antaki, Z. J. Wu, and A. J. Holmes. Computational fluid dynamics as a development tool for rotary blood pumps. Artif. Organs. 25(5):336–340, 2001.

    Article  Google Scholar 

  10. Cherdron, W., F. Durst, and J. H. Whitelaw. Asymmetric flows and instabilities in symmetric ducts with sudden expansions. J. Fluid Mech. 84(01):13–31, 1978.

    Article  Google Scholar 

  11. Chua, L. P., K. S. Ong, G. Song, and W. Ji. Measurements by laser Doppler velocimetry in the casing/impeller clearance gap of a biocentrifugal ventricular assist device model. Artif. Organs. 33(4):360–372, 2009.

    Article  Google Scholar 

  12. Deutsch, S., J. M. Tarbell, K. B. Manning, G. Rosenberg, and A. A. Fontaine. Experimental fluid mechanics of pulsatile artificial blood pumps. Annu. Rev. Fluid Mech. 38:65–86, 2006.

    Article  MATH  Google Scholar 

  13. Dorn, F., F. Niedermeyer, A. Balasso, D. Liepsch, and T. Liebig. The effect of stents on intra-aneurysmal hemodynamics: in vitro evaluation of a pulsatile sidewall aneurysm using laser Doppler anemometry. Neuroradiology. 53(4):267–272, 2011.

    Article  Google Scholar 

  14. Dumont, K., J. Vierendeels, R. Kaminsky, G. Van Nooten, P. Verdonck, and D. Bluestein. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J. Biomech. Eng. 129(4):558–565, 2007.

    Article  Google Scholar 

  15. Dwyer, H. A., P. B. Matthews, A. Azadani, N. Jaussaud, L. Ge, T. S. Guy, and E. E. Tseng. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact. Cardiovasc. Thorac. Surg. 9(2):301–308, 2009.

    Article  Google Scholar 

  16. Fiore, G. B., U. Morbiducci, R. Ponzini, and A. Redaelli. Bubble tracking through computational fluid dynamics in arterial line filters for cardiopulmonary bypass. ASAIO J. 55(5):438–444, 2009.

    Article  Google Scholar 

  17. Fraser, K. H., M. E. Taskin, B. P. Griffith, and Z. J. Wu. The use of computational fluid dynamics in the development of ventricular assist devices. Med. Eng. Phys. 33:263–280, 2011.

    Article  Google Scholar 

  18. Gach, H. M., and I. J. Lowe. Measuring flow reattachment lengths downstream of a stenosis using MRI. J. Magn. Reson. Imaging. 12(6):939–948, 2000.

    Article  Google Scholar 

  19. Ge, L., H. L. Leo, F. Sotiropoulos, and A. P. Yoganathan. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng. 127(5):782–797, 2005.

    Article  Google Scholar 

  20. Grigioni, M., C. Daniele, G. D’Avenio, and V. Barbaro. A discussion on the threshold limit for hemolysis related to Reynolds shear stress. J. Biomech. 32(10):1107–1112, 1999.

    Article  Google Scholar 

  21. Hariharan, P., M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, S. F. Stewart, M. R. Myers, M. R. Berman, G. W. Burgreen, and E. G. Paterson. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng. 133(4):041002, 2011.

    Article  Google Scholar 

  22. He, Y., N. Duraiswamy, A. O. Frank, and J. E. Moore. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J. Biomech. Eng. 127(4):637–647, 2005.

    Article  Google Scholar 

  23. Herbertson, L.H. Evaluation of Fluid Mechanics and Cavitation Generated by Mechanical Heart Valves during Closure Phase. PhD Dissertation. The Pennsylvania State University; 2009

  24. Herbertson, L. H., S. Deutsch, and K. B. Manning. Near valve flows and potential blood damage during closure of a bileaflet mechanical heart valve. J. Biomech. Eng. 133(9):094507, 2011.

    Article  Google Scholar 

  25. Herbertson, L. H., S. E. Olia, A. Daly, C. P. Noatch, W. A. Smith, M. V. Kameneva, and R. A. Malinauskas. Multilaboratory study of flow-induced hemolysis using the FDA benchmark nozzle model. Artif. Organs. 39(3):237–248, 2015.

    Article  Google Scholar 

  26. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Wall shear-rate estimation within the 50 cc Penn State artificial heart using particle image velocimetry. J. Biomech. Eng. 126(4):430–437, 2004.

    Article  Google Scholar 

  27. FDA’s Critical Path Initiative. 2015. http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/ucm076689.htm. Accessed 16 Oct 2015.

  28. Izraelev, V., W. J. Weiss, B. Fritz, R. K. Newswanger, E. G. Paterson, A. Snyder, R. B. Medvitz, J. Cysyk, W. E. Pae, D. Hicks, and B. Lukic. A passively-suspended Tesla pump left ventricular assist device. ASAIO J. 55(6):556–561, 2009.

    Article  Google Scholar 

  29. Kini, V., C. Bachmann, A. Fontaine, S. Deutsch, and J. M. Tarbell. Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves. Artif. Organs. 25(2):136–145, 2001.

    Article  Google Scholar 

  30. Kirklin, J. K., D. C. Naftel, R. L. Kormos, L. W. Stevenson, F. D. Pagani, M. A. Miller, J. T. Baldwin, and J. B. Young. The fourth INTERMACS annual report: 4,000 implants and counting. J. Heart Lung Transpl. 31(2):117–126, 2012.

    Article  Google Scholar 

  31. LaDisa, Jr, J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31(8):972–980, 2003.

    Article  Google Scholar 

  32. Legendre, D., P. Antunes, E. Bock, A. Andrade, J. F. Biscegli, and J. P. Ortiz. Computational fluid dynamics investigation of a centrifugal blood pump. Artif. Organs. 32(4):342–348, 2008.

    Article  Google Scholar 

  33. Leo, H. L., H. Simon, J. Carberry, S. C. Lee, and A. P. Yoganathan. A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann. Biomed. Eng. 33(4):429–443, 2005.

    Article  Google Scholar 

  34. Long, T. C., J. J. Pearson, A. C. Hankinson, S. Deutsch, and K. B. Manning. An in vitro fluid dynamic study of pediatric cannulae: the value of animal studies to predict human flow. J. Biomech. Eng. 134(4):044501, 2012.

    Article  Google Scholar 

  35. Manning, K. B., L. H. Herbertson, A. A. Fontaine, and S. Deutsch. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage. J. Biomech. Eng. 130(4):041001, 2008.

    Article  Google Scholar 

  36. Manning, K. B., T. M. Przybysz, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Near field flow characteristics of the Bjork-Shiley Monostrut valve in a modified single shot valve chamber. ASAIO J. 51(2):133–138, 2005.

    Article  Google Scholar 

  37. Maymir, J. C., S. Deutsch, R. S. Meyer, D. B. Geselowitz, and J. M. Tarbell. Mean velocity and Reynolds stress measurements in the regurgitant jets of tilting disk heart valves in an artificial heart environment. Ann. Biomed. Eng. 26(1):146–156, 1998.

    Article  Google Scholar 

  38. Medvitz, R. B., J. W. Kreider, K. B. Manning, A. A. Fontaine, S. Deutsch, and E. G. Paterson. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO J. 53(2):122–131, 2007.

    Article  Google Scholar 

  39. Medvitz, R. B., V. Reddy, S. Deutsch, K. B. Manning, and E. G. Paterson. Validation of a CFD methodology for positive displacement LVAD analysis using PIV data. J. Biomech. Eng. 131(11):111009, 2009.

    Article  Google Scholar 

  40. Menon, P. G., N. Teslovich, C. Y. Chen, A. Undar, and K. Pekkan. Characterization of neonatal aortic cannula jet flow regimes for improved cardiopulmonary bypass. J. Biomech. 46(2):362–372, 2013.

    Article  Google Scholar 

  41. Nanna, J. C., M. A. Navitsky, S. R. Topper, S. Deutsch, and K. B. Manning. A fluid dynamics study in a 50 cc pulsatile ventricular assist device: influence of heart rate variability. J. Biomech. Eng. 133(10):101002, 2011.

    Article  Google Scholar 

  42. Nobili, M., U. Morbiducci, R. Ponzini, C. Del Gaudio, A. Balducci, M. Grigioni, F. M. Montevecchi, and A. Redaelli. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J. Biomech. 41(11):2539–2550, 2008.

    Article  Google Scholar 

  43. Pant, S., N. W. Bressloff, A. I. Forrester, and N. Curzen. The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann. Biomed. Eng. 38(5):1893–1907, 2010.

    Article  Google Scholar 

  44. Pedersen, N., P. S. Larsen, and C. B. Jacobsen. Flow in a centrifugal pump impeller at design and off-design conditions—part I: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements. J. Fluid Eng. 125(1):61–72, 2003.

    Article  Google Scholar 

  45. Roszelle, B. N., M. G. Fickes, S. Deutsch, and K. B. Manning. Visualization of the Penn State pulsatile pediatric ventricular assist device cannulae and change in outlet valve placement. Cardiovasc Engr Technol. 2(4):244–252, 2011.

    Article  Google Scholar 

  46. Saga, T., H. Hu, T. Kobayashi, S. Murata, K. Okamoto, and S. Nishio. A comparative study of the PIV and LDV measurements on a self-induced sloshing flow. J. Vis. Jpn. 3(2):145–156, 2000.

    Article  Google Scholar 

  47. Sallam, A. M., and N. H. Hwang. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology. 21(6):783–797, 1983.

    Google Scholar 

  48. Saxena, R., J. Lemmon, J. Ellis, and A. Yoganathan. An in vitro assessment by means of laser Doppler velocimetry of the medtronic advantage bileaflet mechanical heart valve hinge flow. J. Thorac. Cardiovasc. Sur. 126(1):90–98, 2003.

    Article  Google Scholar 

  49. Shtern, V., and F. Hussain. Effect of deceleration on jet instability. J. Fluid Mech. 480:283–309, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  50. Song, X., H. G. Wood, and D. Olsen. Computational fluid dynamics (CFD) study of the 4th generation prototype of a continuous flow ventricular assist device (VAD). J. Biomech. Eng. 126(2):180–187, 2004.

    Article  Google Scholar 

  51. Stewart, S. F., E. G. Paterson, G. W. Burgreen, P. Hariharan, M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, M. R. Berman, and M. R. Myers. Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational interlaboratory study. Cardiovasc. Eng. Technol. 3(2):139–160, 2012.

    Article  Google Scholar 

  52. Stewart, S. F., R. A. Robinson, R. A. Nelson, and R. A. Malinauskas. Effects of thrombosed vena cava filters on blood flow: flow visualization and numerical modeling. Ann. Biomed. Eng. 36(11):1764–1781, 2008.

    Article  Google Scholar 

  53. Throckmorton, A. L., and A. Untaroiu. CFD analysis of a Mag-Lev ventricular assist device for infants and children: Fourth generation design. ASAIO J. 54(4):423–431, 2008.

    Article  Google Scholar 

  54. Tropea, C., A. L. Yarin, and J. F. Foss. Spring Handbook of Experimental Fluid Mechanics, Vol. 1. New York: Springer Science & Business Media, 2007.

    Book  Google Scholar 

  55. Weston, M. W., D. V. LaBorde, and A. P. Yoganathan. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann. Biomed. Eng. 27(4):572–579, 1999.

    Article  Google Scholar 

  56. Wu, J., B. E. Paden, H. S. Borovetz, and J. F. Antaki. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Artif. Organs. 34(5):402–411, 2010.

    Article  Google Scholar 

  57. Yang, N., S. Deutsch, E. G. Paterson, and K. B. Manning. Numerical study of blood flow at the end-to-side anastomosis of a left ventricular assist device for adult patients. J. Biomech. Eng. 131(11):111005, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the US Food and Drug Administration’s Critical Path Initiative. We would like to thank Dr. Luke Herbertson for reviewing the manuscript and providing valuable comments.

Disclaimer

Any mention of commercial products and/or manufactures does not imply endorsement by the US Department of Health and Human Services.

Disclosures

The authors have no conflicts or disclosures. No human or animal studies were performed as part of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keefe B. Manning.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, J.O., Good, B.C., Paterno, A.V. et al. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry. Cardiovasc Eng Tech 7, 191–209 (2016). https://doi.org/10.1007/s13239-016-0270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-016-0270-1

Keywords

Navigation