Skip to main content

Advertisement

Log in

A Genetic Algorithm Optimization Method for Mapping Non-Conducting Atrial Regions: A Theoretical Feasibility Study

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Atrial ablation has been recently utilized for curing atrial fibrillation. The success rate of empirical ablation is relatively low as often the exact locations of the arrhythmogenic sources remain elusive. Guided ablation has been proposed to improve ablation technique by providing guidance regarding the potential localization of the sources; yet to date no main technological solution has been widely adopted as an integral part of the ablation process. Here we propose a genetic algorithm optimization technique to map a major arrhythmogenic substance—non-conducting regions (NCRs). Excitation delays in a set of electrodes of known locations are measured following external tissue stimulation, and the spatial distribution of obstacles that is most likely to yield the measured delays is reconstructed. A forward problem module was solved to provide synthetic time delay measurements using a 2D human atrial model with known NCR distribution. An inverse genetic algorithm module was implemented to optimally reconstruct the locations of the now unknown obstacle distribution using the synthetic measurements. The performance of the algorithm was demonstrated for several distributions varying in NCR number and shape. The proposed algorithm was found robust to measurements with a signal-to-noise ratio of at least −20 dB, and for measuring electrodes separated by up to 3.2 mm. Our results support the feasibility of the proposed algorithm in mapping NCRs; nevertheless, further research is required prior to clinical implementation for incorporating more complex atrial tissue geometrical configurations as well as for testing the algorithm with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akoum, N., M. Daccarett, C. McGann, N. Segerson, G. Vergara, S. Kuppahally, T. Badger, N. Burgon, T. Haslam, E. Kholmovski, R. Macleod, and N. Marrouche. Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: a DE-MRI guided approach. J. Cardiovasc. Electrophysiol. 22(1):16–22, 2011.

    Article  Google Scholar 

  2. Alonso, S., and M. Bar. Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue. Phys. Rev. Lett. 110:158101, 2013.

    Article  Google Scholar 

  3. Ashihara, T., R. Haraguchi, K. Nakazawa, T. Namba, T. Ikeda, Y. Nakazawa, T. Ozawa, M. Ito, M. Horie, and N. A. Trayanova. The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation. Circ. Res. 110(2):275–285, 2012.

    Article  Google Scholar 

  4. Atienza, F., J. Almendral, J. Moreno, R. Vaidyanathan, A. Talkachou, J. Kalifa, A. Arenal, J. P. Villacastín, E. G. Torrecilla, A. Sánchez, R. Ploutz-Snyder, J. Jalife, and O. Berenfeld. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation 114(23):2434–2442, 2006.

    Article  Google Scholar 

  5. Boldt, A., U. Wetzel, J. Lauschke, J. Weigl, J. Gummert, G. Hindricks, H. Kottkamp, and S. Dhein. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart 90(4):400–405, 2004.

    Article  Google Scholar 

  6. Camelliti, P., C. R. Green, I. LeGrice, and P. Kohl. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ. Res. 94:828–835, 2004.

    Article  Google Scholar 

  7. Courtemanche, M., R. J. Ramirez, and S. Nattel. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275:H301–H321, 1998.

    Google Scholar 

  8. Cuculich, P. S., Y. Wang, B. D. Lindsay, R. Vijayakumar, and Y. Rudy. Noninvasive real-time mapping of an incomplete pulmonary vein isolation using electrocardiographic imaging. Heart Rhythm 7(9):1316–1317, 2009.

    Article  Google Scholar 

  9. Dong, J., T. Dickfeld, D. Dalal, A. Cheema, C. R. Vasamreddy, C. A. Henrikson, J. E. Marine, H. R. Halperin, R. D. Berger, J. A. Lima, D. A. Bluemke, and H. Calkins. Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 17(5):459–466, 2006.

    Article  Google Scholar 

  10. Eckstein, J., B. Maesen, D. Linz, S. Zeemering, A. van Hunnik, S. Verheule, M. Allessie, and U. Schotten. Time course and mechanisms of endo-epicardial electrical dissociation during atrial fibrillation in the goat. Cardiovasc. Res. 89:816–824, 2011.

    Article  Google Scholar 

  11. Ganesan, A. N., P. Kuklik, D. H. Lau, A. G. Brooks, M. Baumert, W. W. Lim, S. Thanigaimani, S. Nayyar, R. Mahajan, J. M. Kalman, K. C. Roberts-Thomson, and P. Sanders. Bipolar electrogram Shannon entropy at sites of rotational activation: implications for ablation of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 6(1):48–57, 2013.

    Article  Google Scholar 

  12. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading: Addison-Wesley Professional, 1989.

    MATH  Google Scholar 

  13. Goldberg D. E. Sizing populations for serial and parallel genetic algorithms. Proceedings of 3rd International Conference on Genetic Algorithms. San Mateo, pp. 70–79, 1989.

  14. Gotshall S., and B. Rylander. Optimal population size and the genetic algorithm. Proceedings of 2002 WSEAS International Conference on Cancun, Mexico, pp. 2151–2155, 2002.

  15. Greisas, A., Z. Zafrir, and S. Zlochiver. Detection of abnormal cardiac activity using principal component analysis—a theoretical study. IEEE Trans. Biomed. Eng. 62(1):154–164, 2015.

    Article  Google Scholar 

  16. Gupta, P., and B. Kaur. Accuracy enhancement of heart disease diagnosis system using neural network and genetic algorithm. Int. J. Adv. Res. Comput. Softw. Eng. 4(8):160–166, 2014.

    Google Scholar 

  17. Kalifa, J., K. Tanaka, A. V. Zaitsev, M. Warren, R. Vaidyanathan, D. Auerbach, S. Pandit, K. L. Vikstrom, R. Ploutz-Snyder, A. Talkachou, F. Atienza, G. Guiraudon, J. Jalife, and O. Berenfeld. Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation 113:626–633, 2006.

    Article  Google Scholar 

  18. Kim, D. H., N. Lu, R. Ghaffari, Y. S. Kim, S. P. Lee, L. Xu, J. Wu, R. H. Kim, J. Song, Z. Liu, J. Viventi, B. de Graff, B. Elolampi, M. Mansour, M. J. Slepian, S. Hwang, J. D. Moss, S. M. Won, Y. Huang, B. Litt, and J. A. Rogers. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10(4):316–323, 2011.

    Article  Google Scholar 

  19. Lim, K. T., S. Knecht, M. Wright, and M. Haissaguerre. Atrial substrate ablation in atrial fibrillation. In: Cardiac Electrophysiology, from Cell to Bedside5th, edited by D. P. Zipes, and J. Jalife. Philadelphia: Saunders, 2009, p. 1059.

    Google Scholar 

  20. Mariscalco, G., K. G. Engstrom, S. Ferrarese, G. Cozzi, V. D. Bruno, F. Sessa, and A. Sala. Relationship between atrial histopathology and atrial fibrillation after coronary bypass surgery. J. Thorac. Cardiovasc. Surg. 131(6):1364–1372, 2006.

    Article  Google Scholar 

  21. Mishraa, A., P. K. Duttab, and M. K. Ghoshc. A GA based approach for boundary detection of left ventricle with echocardiographic image sequences. Image Vision Comput. 21:967–976, 2003.

    Article  Google Scholar 

  22. Nademanee, K., J. McKenzie, E. Kosar, M. Schwab, B. Sunsaneewitayakul, T. Vasavakul, C. Khunnawat, and T. Ngarmukos. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol. 43:2044–2053, 2004.

    Article  Google Scholar 

  23. Oral, H. Atrial fibrillation: mechanisms, features, and management. In: Cardiac Electrophysiology, from Cell to Bedside5th, edited by D. P. Zipes, and J. Jalife. Philadelphia: Saunders, 2009, p. 577.

    Google Scholar 

  24. Pappone, C., S. Rosanio, G. Oreto, M. Tocchi, F. Gugliotta, G. Vicedomini, A. Salvati, C. Dicandia, P. Mazzone, V. Santinelli, S. Gulletta, and S. Chierchia. Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation 102:2619–2628, 2000.

    Article  Google Scholar 

  25. Podziemski, P., and J. J. Zebrowski. A simple model of the right atrium of the human heart with the sinoatrial and atrioventricular nodes included. J. Clin. Monit. Comput. 27:481–498, 2013.

    Article  Google Scholar 

  26. Roy, D., M. Talajic, S. Nattel, D. G. Wyse, P. Dorian, K. L. Lee, M. G. Bourassa, J. M. Arnold, A. E. Buxton, A. J. Camm, S. J. Connolly, M. Dubuc, A. Ducharme, P. G. Guerra, S. H. Hohnloser, J. Lambert, J. Y. Le Heuzey, G. O’Hara, O. D. Pedersen, J. L. Rouleau, B. N. Singh, L. W. Stevenson, W. G. Stevenson, B. Thibault, and A. L. Waldo. Rhythm control versus rate control for atrial fibrillation and heart failure. N. Eng. J. Med. 358(25):2667–2677, 2008.

    Article  Google Scholar 

  27. Sanders, P., O. Berenfeld, M. P. Jaïs, R. Vaidyanathan, L. F. Hsu, S. Garrigue, Y. Takahashi, M. Rotter, F. Sacher, C. Scavée, R. Ploutz-Snyder, J. Jalife, and M. Haïssaguerre. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation 112(6):789–797, 2005.

    Article  Google Scholar 

  28. Simitev, R. D., and V. N. Biktashev. Conditions for propagation and block of excitation in an asymptotic model of atrial tissue. Biophys. J. 90:2258–2269, 2006.

    Article  Google Scholar 

  29. Syed, Z., E. Vigmond, S. Nattel, and L. J. Leon. Atrial cell action potential parameter fitting using genetic algorithms. Med. Biol. Eng. Comput. 43(5):561–571, 2005.

    Article  Google Scholar 

  30. Venkatachalam, K. L., J. E. Herbrandson, and S. J. Asirvatham. Signals and signal processing for the electrophysiologist. Part I: electrogram acquisition. Circ. Arrhythm. Electrophysiol. 4:965–973, 2011.

    Article  Google Scholar 

  31. Vergara, G. R., S. Vijayakumar, E. G. Kholmovski, J. J. Blauer, M. A. Guttman, C. Gloschat, G. Payne, K. Vij, N. W. Akoum, M. Daccarett, C. J. McGann, R. S. Macleod, and N. F. Marrouche. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla. Heart Rhythm. 8(2):295–303, 2011.

    Article  Google Scholar 

  32. Zlochiver, S., V. Munoz, K. L. Vikstrok, S. M. Taffet, O. Berenfeld, and J. Jalife. Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers. Biophys. J. 95:4469–4480, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Zlochiver.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiff, S., Swissa, M. & Zlochiver, S. A Genetic Algorithm Optimization Method for Mapping Non-Conducting Atrial Regions: A Theoretical Feasibility Study. Cardiovasc Eng Tech 7, 87–101 (2016). https://doi.org/10.1007/s13239-015-0253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0253-7

Keywords

Navigation