Skip to main content

Advertisement

Log in

A Patient-Specific Computational Fluid Dynamic Model for Hemodynamic Analysis of Left Ventricle Diastolic Dysfunctions

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart’s left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset to the medical field helping medical practitioners better predict the existence of any abnormalities in the patient, hence offer an appropriate treatment. The methodology employed in this work processed geometries obtained from MRI scans of patient-specific LV throughout a cardiac cycle using computer-aided design tool. It then used unstructured mesh generation techniques to generate surface and volume meshes for flow simulations; thus provided flow visualization and characteristics in patient-specific LV. The resulting CFD model provides three dimensional velocity streamlines on the geometries at specific times in a cardiac cycle, and they are compared with existing literature findings, such as data from echocardiography particle image velocimetry. As an important flow characteristic, vortex formation of the blood flow of healthy as well as diseased subjects having a LV dysfunction condition are also obtained from simulations and further investigated for potential diagnosis. The current work established a pipeline for a non-invasive diagnostic tool for diastolic dysfunction by generating patient-specific LV models and CFD models in the spatiotemporal dimensions. The proposed framework was applied for analysis of a group of normal subjects and patients with cardiac diseases. Results obtained using the numerical tool showed distinct differences in flow characteristics in the LV between patient with diastolic dysfunction and healthy subjects. In particular, vortex structures do not develop during cardiac cycles for patients while it was clearly seen in the normal subjects. The current LV CFD model has proven to be a promising technology to aid in the diagnosis of LV conditions leading to heart failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Bolger, A. F., E. Heiberg, M. Karlsson, L. Wigstrm, J. Engvall, A. Sigfridsson, and Wranne, B. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 9(5):741–747, 2007. doi:10.1080/10976640701544530.

    Article  Google Scholar 

  2. Davies, M. K., F. D. R. Hobbs, R. C. Davis, J. E. Kenkre, A. K. Roalfe, R. Hare, D. Wosornu, and R. J. Lancashire. Prevalence of left-ventricular systolic dysfunction and heart failure in the Echocardiographic Heart of England Screening study: a population based study. Lancet 358:439–444, 2001.

    Article  Google Scholar 

  3. Elbaz, M. S. M., E. E. Calkoen, J. J. M. Westenberg, B. P. F. Lelieveldt, A. A. W. Roest, and R. J. van der Geest. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J. Cardiovasc. Magn. Reson. 16(1):78, 2014.

    Article  Google Scholar 

  4. Eriksson, J., A. F. Bolger, T. Ebbers, and C.-J. Carlhll. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imag. 14(5):417–24, 2013.

    Article  Google Scholar 

  5. Eriksson, J. and C. Carlhall. Semi-automatic quantification of 4D left ventricular blood flow. J. Cardiovasc. Magn. Reson. 12(1):10, 2010. doi:10.1186/1532-429X-12-9.

    Article  Google Scholar 

  6. Gaasch, W. H. and W. C. Little. Assessment of left ventricular diastolic function and recognition of diastolic heart failure. J. Am. Heart Assoc. 116:591–593, 2007.

    Google Scholar 

  7. Gharib, M., E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. 103(16):6305–6308, 2006.

    Article  Google Scholar 

  8. Gharib, M., E. Rambod, and K. Shariff. A universal time scale for vortex ring formation. J. Fluid Mech. 360:121–140, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hobbs R. and A. Boyle. Heart failure. Disease Management Project, Cleveland Clinic, August, 2010.

  10. Iwase, H., H. Liu, S. Fujimoto, and R. Himeno. Computational modeling of left ventricle dynamics and flow based on ultrasonographic data. JSME Int. J. 46:1321–1329, 2003.

    Article  Google Scholar 

  11. Jameson, A., W. Schmidt, and E. Turkel. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. AIAA Paper, 1981.

  12. van Kraaij, D.J., P. E. van Pol, A. W.Ruiters, J. B. de Swart, D. J. Lips, N. Lencer, and P. A. Doevendans. Diagnosing diastolic heart failure. Eur. J. Heart Fail. 4(2002):419–430, 2002.

    Article  Google Scholar 

  13. Kulp, S., D. Metaxas, Z. Qian, S. Voros, L. Axel, and V. Mihalef. Patient-specific modeling and visualization of blood flow through the heart. In: Proceedings of the 2011 International Symposium on Biomedical Imaging, 2011.

  14. Long, Q., R. Merrifield, X. Y. Xu, P. Kilner, D. N. Firmin, and G.-Z. Yang. Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging. J. Eng. Med. 222:475–485, 2008.

    Article  Google Scholar 

  15. Mavriplis, D. J. and V. Venkatakrishnan. A 3D agglomeration multigrid solver for the Reynoldsaveraged NavierStokes equations on unstructured meshes. Int. J. Numer. Methods Fluids 23:527–544, 1996.

    Article  MATH  Google Scholar 

  16. Nguyen, V.-T., J. L. Chong, H. H. Nguyen, L. Zhong, and H. L. Leo. A semi-automated method for patient-specific computational flow modeling of left ventricles. Comput. Methods Biomech. Biomed. Eng. 2013. doi:10.1080/10255842.2013.803534.

    Article  Google Scholar 

  17. Saber, N. R., N. B. Wood, A. D. Gosman, R. D. Merrifield, G.-Z. Yang, C. L. Charrier, P. D. Gatehouse, and D. N. Firmin. Progress towards patient-specic computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Ann. Biomed. Eng. 31(2003):42–52, 2003.

    Article  Google Scholar 

  18. Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37(3):503–515, 2008.

    Article  Google Scholar 

  19. Schocken, D. D., E. J. Benjamin, G. C. Fonarow, H. M. Krumholz, D. Levy, G. A. Mensah, J. Narula, E. S. Shor, J. B. Young, and Y. Hong. Prevention of heart failure a scientific statement from the American Heart Association Councils on epidemiology and prevention, clinical cardiology, cardiovascular nursing, and high blood pressure research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 117:2544–2565, 2008.

    Article  Google Scholar 

  20. Sengupta, P. P., G. Pedrizzetti, P. J. Kilner, A. Kheradvar, T. Ebbers, G. Tonti, A. G. Fraser, and J. Narula. Emerging trends in CV flow visualisation. JACC: Cardiovasc. Imaging 5(3):305–316, 2012.

    Google Scholar 

  21. Silberman, G. A., T.-H. M. Fan, H. Liu, Z. Jiao, H. D. Xiao, J. D. Lovelock, B. M. Boulden, J. Widder, S. Fredd, K. E. Bernstein, B. M. Wolska, S. Dikalov, D. G. Harrison, and S. C. Dudley, Jr. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121:519–528, 2010.

    Article  Google Scholar 

  22. Tsanas, A., J. Y. Goulermas, V. Vartela, D. Tsiapras, G Theodorakis, A. C. Fisher, and P. Sfirakis. The Windkessel model revisited: a qualitative analysis of the circulatory system. Med. Eng. Phys. 31:581–588, 2009.

    Article  Google Scholar 

  23. Wantanabe, H., S. Sugiura, H. Kafuku, and T. Hisada. Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87:2074–2085, 2004.

    Article  Google Scholar 

  24. Westenberg, J. J. M. CMR for assessment of diastolic function. Curr. Cardiovasc. Imag. Reports 4:149–158, 2011.

    Article  Google Scholar 

  25. Westerhof, N., J.-W. Lankhaar, and B. E. Westerhof. The arterial Windkessel. Med. Biol. Eng. Comput. 47:131–141, 2009.

    Article  Google Scholar 

  26. Zile, M. R. and D. L. Brutsaert. New concepts in diastolic dysfunction and diastolic heart failure: part I. Circulation 105(11):1387–1393, 2002.

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Research Foundation, Singapore under its Cooperative Basic Research Grant and administered by the Singapore Ministry of Healths National Medical Research Council (NMRC/EDG/1037/2011).

Conflicts of Interest

There are no conflicts of interest.

Human Studies

Data used in this work obtained from procedures in accordance with the ethical standards and approval from the Ministry of Health, Singapore.

Animal Studies

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinh-Tan Nguyen.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, VT., Wibowo, S.N., Leow, Y.A. et al. A Patient-Specific Computational Fluid Dynamic Model for Hemodynamic Analysis of Left Ventricle Diastolic Dysfunctions. Cardiovasc Eng Tech 6, 412–429 (2015). https://doi.org/10.1007/s13239-015-0244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0244-8

Keywords

Navigation