Skip to main content
Log in

Comparison Between Bench-Top and Computational Modelling of Cerebral Thromboembolism in Ventricular Assist Device Circulation

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Despite improvements in ventricular assist devices (VAD) design, VAD-induced stroke rates remain remarkably high at 14–47%. We previously employed computational fluid dynamics (CFD) to propose adjustment of VAD outflow graft (VAD-OG) implantation to reduce stoke. Herein, we present an in-vitro model of cerebral vessel embolization in VAD-assisted circulation, and compare benchtop results to CFD predictions. The benchtop flow-loop consists of a 3D printed aortic bed using Accura 60 polymer driven by a continuous-flow pump. Three hundred spherical particles simulating thrombi of 2, 3.5, and 5 mm diameters were injected at the mock VAD-OG inlet. A water and glycerin mixture (3.8 cP viscosity) synthetically mimicked blood. The flowrate was adjusted to match the CFD Reynolds number. Catch cans were used to capture and count particles reaching cerebral vessels. VAD-OG geometries were evaluated using comparison of means Z-score range of −1.96 ≤ Z ≤ 1.96 to demonstrate overall agreement between computational and in-vitro techniques. Z-scores were: (i) Z = −1.05 for perpendicular (0°), (ii) Z = 0.32 for intermediate (30°), and (iii) Z = −0.52 for shallow (60°) anastomosis and confirmed agreement for all geometries. This study confirmed added benefits of using a left carotid artery bypass-graft with percent embolization reduction: 22.6% for perpendicular, 21.2% for intermediate, and 11.9% for shallow anastomoses. The shallow anastomosis demonstrated lower degrees of aortic arch flow recirculation, consistent with steady-flow computations. Quantitatively and qualitatively, contemporary steady-flow computational models for predicting VAD-induced cerebral embolization can be achieved in-vitro to validate the CFD equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ansari, M., and B. M. Massie. Heart failure: how big is the problem? Who are the patients? What does the future hold? Am. Heart J. 146(1):1–4, 2003.

    Article  Google Scholar 

  2. Argueta-Morales, I. R., R. Tran, A. Ceballos, W. Clark, R. Osorio, E. Divo, et al. Mathematical modeling of patient-specific ventricular assist device implantation to reduce particulate embolization rate to cerebral vessels. J. Biomech. Eng. 136:071008, 2014.

    Article  Google Scholar 

  3. Argueta-Morales, I., R. Tran, W. Clark, E. Divo, A. Kassab, and W. DeCampli. Use of computational fluid dynamics (CFD) to tailor the surgical implantation of a ventricular assist device (VAD): a patient-specific approach to reduce risk of stroke. J. Am. Coll. Surg. 211:S26, 2010.

    Article  Google Scholar 

  4. Argueta-Morales, I., Tran, R., Clark, W., Divo, E., Kassab, A., and Decampli, W. Surgical adjustment of the LVAD conduit to reduce thrombo-embolism: current results and progress towards multi-scale modeling. Presented at first international conference on computational simulation in congenital heart disease (CS-CHD 2010), 2010.

  5. Baretta, A., C. Corsini, A. Marsden, I. Vignon-Clementel, T. Y. Hsia, G. Dubini, F. Migliavacca, and G. Pennati. Respiratory effects on hemodynamics in patient-specific CFD models of the Fontan circulation under exercise conditions. Eur. J. Mech. B. 35:61–69, 2012.

    Article  MathSciNet  Google Scholar 

  6. Bhama JKB, C.A., Teuteberg, J., Lockard, K., Shullo, M., McCall, M., and Kormos, R.L., editors. Contemporary experience with pump thrombosis in patients supported with an axial flow LVAD. 94th American Association for Thoracic Surgery Annual Meeting, Toronto, 2014.

  7. Bluestein, D., R. Schoephoerster, and M. Dewanjee. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J. Biomech. Eng. 118:280–286, 1996.

    Article  Google Scholar 

  8. Ceballos, A., Kassab, A., Osorio, R., Divo, E., Argueta-Morales, I., and Decampli W. computational fluid dynamics analysis to minimize stroke risk. Faculty podium presentation by W M Decampli at the the 3rd international conference on engineering frontiers in pediatric and congenital heart disease, May 1–2, 2012.

  9. DesJardins, S., I. Argueta-Morales, A. Ceballos, R. Osorio, R. Tran, E. Divo, et al. ‘‘Tailoring’’ the surgical placement of pediatric ventricular assist devices (VAD) may reduce stroke risk. World J. Pediatr. Congenital Heart Surg. 2:187, 2011.

    Google Scholar 

  10. Devore, J. Probability and statistics for engineering and sciences. Pacific Grove: Brooks/Cole Publishing Co., 2004.

    Google Scholar 

  11. Drakos, S. G. The odyssey of chronic cardiac mechanical support. J. Am. Coll. Cardiol. 63:1758–1760, 2014.

    Article  Google Scholar 

  12. Frazier, O., and J. Kirklin. Mechanical circulatory support. ISHLT Monograph. New York: Elsevier, pp. 1–8, 2006.

    Google Scholar 

  13. Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292, 2014.

    Article  Google Scholar 

  14. Inci, G., and E. Sorguven. Effect of LVAD outlet graft anastomosis angle on the aortic valve, wall, and flow. ASAIO J. 58(4):373–381, 2012.

    Article  Google Scholar 

  15. John, R. Current axial-flow devices—the HeartMate II and Jarvik 2000 left ventricular assist devices. Semin. Thorac. Cardiovasc. Surg. 20(3):264–272, 2008.

    Article  Google Scholar 

  16. Karmonik, C., S. Partovi, M. Loebe, B. Schmack, A. Ghodsizad, M. R. Robbin, et al. Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach. ASAIO J. 58(6):562–567, 2012.

    Article  Google Scholar 

  17. Karmonik, C., S. Partovi, M. Loebe, B. Schmack, A. Weymann, A. B. Lumsden, et al. Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta. J. Thorac. Cardiovasc. Surg. 147(4):1326–1333e1, 2014.

    Article  Google Scholar 

  18. Kirklin, J. K., D. C. Naftel, R. L. Kormos, F. D. Pagani, S. L. Myers, L. W. Stevenson, et al. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J. Heart Lung Transpl. 33(1):12–22, 2014.

    Article  Google Scholar 

  19. Kirklin, J. K., D. C. Naftel, R. L. Kormos, L. W. Stevenson, F. D. Pagani, M. A. Miller, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J. Heart Lung Transpl. 32(2):141–156, 2013.

    Article  Google Scholar 

  20. Kung, E., A. M. Kahn, J. C. Burns, and A. Marsden. Validation of Patient-Specific Hemodynamic Simulations in Coronary Aneurysms Caused by Kawasaki Disease. Cardiovasc. Eng. Technol. 5(2):189–201, 2014.

    Article  Google Scholar 

  21. Kung, E. O., A. S. Les, F. Medina, R. B. Wicker, M. V. McConnell, and C. A. Taylor. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J. Biomech. Eng. 133(4):041003, 2011.

    Article  Google Scholar 

  22. May-Newman, K., B. Hillen, and W. Dembitsky. Effect of left ventricular assist device outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO J. 52(2):132–139, 2006.

    Article  Google Scholar 

  23. May-Newman, K., B. Hillen, C. Sironda, and W. Dembitsky. Effect of LVAD outflow conduit insertion angle on flow through native aorta. J. Med. Eng. Technol. 28:105–109, 2004.

    Article  Google Scholar 

  24. May-Newman, K. D., B. K. Hillen, C. S. Sironda, and W. Dembitsky. Effect of LVAD outflow conduit insertion angle on flow through the native aorta. J. Med. Eng. Technol. 28(3):105–109, 2004.

    Article  Google Scholar 

  25. Medvitz, R. B., V. Reddy, S. Deutsch, K. B. Manning, and E. G. Paterson. Validation of a CFD methodology for positive displacement LVAD analysis using PIV data. J. Biomech. Eng. 131(11):111009, 2009.

    Article  Google Scholar 

  26. Meuris, B., J. Arnout, D. Vlasselaers, M. Schetz, and B. Meyns. Long-term management of an implantable left ventricular assist device using low molecular weight heparin and antiplatelet therapy: a possible alternative to oral anticoagulants. Artif Organs. 31:402–405, 2007.

    Article  Google Scholar 

  27. Miller, L. W., F. D. Pagani, S. D. Russell, R. John, A. J. Boyle, K. D. Aaronson, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N. Engl. J. Med. 357(9):885–896, 2007.

    Article  Google Scholar 

  28. Mulligan, M. S., T. H. Shearon, D. Weill, F. D. Pagani, J. Moore, and S. Murray. Heart and lung transplantation in the United States, 1997–2006. Am. J. Transpl. 8(4 Pt 2):977–987, 2008.

    Article  Google Scholar 

  29. Nahirnyak, V. M., S. W. Yoon, and C. K. Holland. Acousto-mechanical and thermal properties of clotted blood. J. Acoust. Soc. Am. 119(6):3766–3772, 2006.

    Article  Google Scholar 

  30. Nobili, M., J. Sherrif, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. Am. Soc. Artif. Internal Organs J. 54:64–72, 2008.

    Article  Google Scholar 

  31. Osorio, A. F., R. Osorio, A. Ceballos, R. Tran, W. Clark, E. A. Divo, et al. Computational fluid dynamics analysis of surgical adjustment of left ventricular assist device implantation to minimise stroke risk. Comput. Methods Biomech. Biomed. Eng. 16(6):622–638, 2013.

    Article  Google Scholar 

  32. Osorio, A., Osorio, R., Tran, R., Ceballos, A., Kassab, A., Divo, E., et al. CFD case study to optimize surgical adjustment of ventricular assist device implantation to minimize stroke risk. Part I: Steady-state CFD modeling: international conference on computational & experimental engineering and sciences, Las Vegas, 2010.

  33. Pal, J. D., V. Piacentino, A. D. Cuevas, T. Depp, M. A. Daneshmand, A. F. Hernandez, et al. Impact of left ventricular assist device bridging on posttransplant outcomes. Ann. Thorac. Surg. 88(5):1457–1461, 2009 (discussion 61).

    Article  Google Scholar 

  34. Radovancevic, R., N. Matijevic, A. Bracey, B. Radovancevic, M. Elayda, I. Gregoric, et al. Increased leukocyte-platelet interactions during circulatory support with left ventricular assist devices. ASAIO J. 55:459–464, 2009.

    Article  Google Scholar 

  35. Sandner, S., D. Zimpfer, P. Zrunek, B. Steinlechner, A. Rajek, H. Schima, et al. Low molecular weight heparin as an alternative to unfractionated heparin in the immediate postoperative period after left ventricular assist device implantation. Artif Organs. 32:819–822, 2008.

    Article  Google Scholar 

  36. Schlendorf, K., C. B. Patel, T. Gehrig, T. L. Kiefer, G. M. Felker, A. F. Hernandez, et al. Thrombolytic therapy for thrombosis of continuous flow ventricular assist devices. J. Cardiac. Fail. 20(2):91–97, 2014.

    Article  Google Scholar 

  37. Schmid, C., M. Weyand, D. Nabavi, D. Hammel, M. Deng, E. Ringelstein, et al. Cerebral and systemic embolization during left ventricular support with the Novacor N100 device. Ann. Thorac. Surg. 65:1703–1710, 1998.

    Article  Google Scholar 

  38. Slaughter, M. S., F. D. Pagani, J. G. Rogers, L. W. Miller, B. Sun, S. D. Russell, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J. Heart Lung Transpl. 29(4 Suppl):S1–S39, 2010.

    Article  Google Scholar 

  39. Slaughter, M. S., J. G. Rogers, C. A. Milano, S. D. Russell, J. V. Conte, D. Feldman, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361(23):2241–2251, 2009.

    Article  Google Scholar 

  40. Starling, R. C., N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N. Engl. J. Med. 370(1):33–40, 2014.

    Article  Google Scholar 

  41. Taghavi, S., C. Ward, S. N. Jayarajan, J. Gaughan, L. M. Wilson, and A. A. Mangi. Surgical technique influences HeartMate II left ventricular assist device thrombosis. Ann. Thorac. Surg. 96(4):1259–1265, 2013.

    Article  Google Scholar 

  42. Thoennissen, N., A. Allroggen, M. Ritter, R. Dittrich, C. Schmid, H. Schmid, et al. Influence of inflammation and pump dynamic on cerebral microembolization in patients with Continuous-Flow DeBakey LVAD. ASAIO J. 52:243–247, 2006.

    Article  Google Scholar 

  43. Topper, S. R., M. A. Navitsky, R. B. Medvitz, E. G. Paterson, C. A. Siedlecki, M. J. Slattery, et al. The use of fluid mechanics to predict regions of microscopic thrombus formation in pulsatile VADs. Cardiovasc. Eng. Technol. 5(1):54–69, 2014.

    Article  Google Scholar 

  44. Tsukui, H., A. Abla, J. J. Teuteberg, D. M. McNamara, M. A. Mathier, L. M. Cadaret, et al. Cerebrovascular accidents in patients with a ventricular assist device. J. Thorac. Cardiovasc. Surg. 134(1):114–123, 2007.

    Article  Google Scholar 

  45. Vukicevic, M., J. A. Chiulli, T. Conover, G. Pennati, T. Y. Hsia, R. S. Figliola, et al. Mock circulatory system of the Fontan circulation to study respiration effects on venous flow behavior. ASAIO J. 59(3):253–260, 2013.

    Article  Google Scholar 

  46. Waite, L., and J. Fine. Applied biofluid mechanics. New York: McGraw Hill Book Co., 2007.

    Google Scholar 

  47. Wieselthaler, G. M., H. Schima, M. Hiesmayr, R. Pacher, G. Laufer, G. P. Noon, et al. First clinical experience with the DeBakey VAD continuous-axial-flow pump for bridge to transplantation. Circulation 101(4):356–359, 2000.

    Article  Google Scholar 

  48. Writing Committee M, C. W. Yancy, M. Jessup, B. Bozkurt, J. Butler, D. E. Casey, Jr., et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):e240–e327, 2013.

    Article  Google Scholar 

Download references

Conflict of interest

William D. Clark, Benjamin A. Eslahpazir, I. Ricardo Argueta-Morales, Alain J. Kassab, Eduardo A. Divo, and William M. DeCampli declare that they have no conflicts of interest.

Human Studies/Informed Consent

No human studies were conducted nor patient data collected by the authors for this article.

Animal Studies

No animal studies were carried out by the authors for this articles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain J. Kassab.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Online Resources

Below is the link to the electronic supplementary material.

Online Resource 1 (MPEG 82156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, W.D., Eslahpazir, B.A., Argueta-Morales, I.R. et al. Comparison Between Bench-Top and Computational Modelling of Cerebral Thromboembolism in Ventricular Assist Device Circulation. Cardiovasc Eng Tech 6, 242–255 (2015). https://doi.org/10.1007/s13239-015-0230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0230-1

Keywords

Navigation