Skip to main content
Log in

Bench Models for Assessing the Mechanics of Mitral Valve Repair and Percutaneous Surgery

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Rapid preclinical evaluations of mitral valve (MV) mechanics are currently best facilitated by bench models of the left ventricle (LV). This review aims to provide a comprehensive assessment of these models to aid interpretation of their resulting data, inform future experimental evaluations, and further the translation of results to procedure and device development. For this review, two types of experimental bench models were evaluated. Rigid LV models were characterized as fluid-mechanical systems capable of testing explanted MVs under static and or pulsatile left heart hemodynamics. Passive LV models were characterized as explanted hearts whose left side is placed in series with a static or pulsatile flow-loop. In both systems, MV function and mechanics can be quantitatively evaluated. Rigid and passive LV models were characterized and evaluated. The materials and methods involved in their construction, function, quantitative capabilities, and disease modeling were described. The advantages and disadvantages of each model are compared to aid the interpretation of their resulting data and inform future experimental evaluations. Repair and percutaneous studies completed in these models were additionally summarized with perspective on future advances discussed. Bench models of the LV provide excellent platforms for quantifying MV repair mechanics and function. While exceptional work has been reported, more research and development is necessary to improve techniques and devices for repair and percutaneous surgery. Continuing efforts in this field will significantly contribute to the further development of procedures and devices, predictions of long-term performance, and patient safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Abbreviations

ETER:

Edge-to-edge repair

LV:

Left ventricle

MR:

Mitral regurgitation

MV:

Mitral valve

PM:

Papillary muscle

References

  1. Alfieri, O., and P. Denti. Alfieri stitch and its impact on mitral clip. Eur. J. Cardiothorac. Surg. 39:807–808, 2011.

    Article  Google Scholar 

  2. Askov, J. B., J. L. Honge, M. O. Jensen, H. Nygaard, J. M. Hasenkam, and S. L. Nielsen. Significance of force transfer in mitral valve-left ventricular interaction. In vivo assessment. J. Thorac. Cardiovasc. Surg. 145:1635–1641, 2013.

    Article  Google Scholar 

  3. Bhattacharya, S., and Z. M. He. Annulus tension of the prolapsed mitral valve corrected by edge-to-edge repair. J. Biomech. 45:562–568, 2012.

    Article  Google Scholar 

  4. Bhattacharya, S., T. Pham, H. Zhaoming, and W. Sun. Tension to passively cinch the mitral annulus through coronary sinus access: an ex vivo study in ovine model. J. Biomech. 47:1382–1388, 2014.

    Article  Google Scholar 

  5. Boronyak, S. M., and W. D. Merryma. Development of a simultaneous cryo-anchoring and radiofrequency ablation catheter for percutaneous treatment of mitral valve prolapse. Ann. Biomed. Eng. 40:1971–1981, 2012.

    Article  Google Scholar 

  6. Carpentier, A., D. H. Adams, and F. Filsoufi. Carpentier’s reconstructive valve surgery. Maryland Heights, MO: Saunders, 2010.

    Google Scholar 

  7. Chiam, P. T., and C. E. Ruiz. Percutaneous transcatheter mitral valve repair: a classification of the technology. J. Am. Coll. Cardiol. Interv. 4(1–13):2011, 2011.

    Google Scholar 

  8. Croft, L. R., J. H. Jimenez, R. C. Gorman, J. H. Gorman, III, and A. P. Yoganathan. Efficacy of the edge-to-edge repair in the setting of a dilated ventricle: an in vitro study. Ann. Thorac. Surg. 84:1578–1584, 2007.

    Article  Google Scholar 

  9. Currie, M. E., A. L. Trejos, R. Rayman, M. W. A. Chu, R. Patel, T. Peters, and B. B. Kiaii. Evaluating the effect of three-dimensional visualization on force application and performance time during robotics-assisted mitral valve repair. Innov. Technol. Tech. Cardiothora. Vasc. Surg. 8:199–205, 2013.

    Article  Google Scholar 

  10. De Hart, J., A. de Weger, S. van Tuijl, J. M. Stijnen, C. N. van den Broek, and M. C. Rutten. An ex vivo platform to simulate cardiac physiology: a new dimension for therapy development and assessment. Int. J. Artif. Organs. 34:495–505, 2011.

    Article  Google Scholar 

  11. Dolensky, J. R., L. D. C. Casa, A. W. Siefert, and A. P. Yoganathan. In vitro assessment of available coaptation area as a novel metric for the quantification of tricuspid valve coaptation. J. Biomech. 46:832–836, 2013.

    Article  Google Scholar 

  12. Gao, B., W. Sun, S. Mathew, and Z. He. Effects of papillary muscle position on dynamic stretches of the anterior leaflet under mitral valve edge-To-edge repair condition. J. Heart Valve Dis. 18:135–141, 2009.

    Google Scholar 

  13. Gheewala, N., and K. J. Grande-Allen. Design and mechanical evaluation of a physiological mitral valve organ culture system. Cardiovasc. Eng. Technol. 1:123–131, 2010.

    Article  Google Scholar 

  14. Gheewala, N., K. A. Schwarz, and K. J. Grande-Allen. Organ culture of porcine mitral valves as a novel experimental paradigm. Cardiovasc. Eng. Technol. 2013(4):139–150, 2013.

    Article  Google Scholar 

  15. Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, S. Dai, E. S. Ford, C. S. Fox, S. Franco, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, R. H. Mackey, D. J. Magid, G. M. Marcus, A. Marelli, D. B. Matchar, D. K. McGuire, E. R. Mohler, III, C. S. Moy, M. E. Mussolino, R. W. Neumar, G. Nichol, D. K. Pandey, N. P. Paynter, M. J. Reeves, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, M. B. Turner, and on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics—2014 Update: A Report From the American Heart Association. Circulation 129:e28–e292, 2014.

    Article  Google Scholar 

  16. Gorman, III, J. H., K. B. Gupta, J. T. Streicher, R. C. Gorman, B. M. Jackson, M. B. Ratcliffe, D. K. Bogen, and L. H. Edmunds, Jr. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112:712–724, 1996.

    Article  Google Scholar 

  17. Gunning, P. S., N. Saikrishnan, L. M. McNamara, and A. P. Yoganathan. An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Ann. Biomed. Eng. 42:1195–1206, 2014.

    Article  Google Scholar 

  18. He, Z. M., B. Gao, S. Bhattacharya, T. Harrist, S. Mathew, and W. Sun. In vitro stretches of the mitral valve anterior leaflet during diastole under edge-to-edge repair. J. Biomech. Eng. 131:111012, 2009.

    Article  Google Scholar 

  19. He, Z. M., and C. Jowers. Effect of mitral valve strut chord cutting on marginal chordal tension. J. Heart Valve Dis. 17:628–634, 2008.

    Google Scholar 

  20. Jensen, M. O., A. A. Fontaine, and A. P. Yoganathan. Improved in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall: three dimensional force vector measurement system. Ann. Biomed. Eng. 29:406–413, 2001.

    Article  Google Scholar 

  21. Jensen, H., M. O. Jensen, M. H. Smerup, S. Ringgaard, N. T. Andersen, P. Wierup, J. M. Hasenkam, and S. L. Nielsen. Does down-sized ring annuloplasty induce papillary muscle relocation in ischemic mitral regurgitation? J. Heart Valve Dis. 19:692–700, 2010.

    Google Scholar 

  22. Jimenez, J. H., J. Forbess, L. R. Croft, L. Small, Z. He, and A. P. Yoganathan. Effects of annular size, transmitral pressure, and mitral flow rate on the edge-to-edge repair: an in vitro study. Ann. Thorac. Surg. 82:1362–1368, 2006.

    Article  Google Scholar 

  23. Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.

    Article  Google Scholar 

  24. Leopaldi, A. M., R. Vismara, M. Lemma, L. Valerio, M. Cervo, A. Mangini, M. Contino, A. Redaelli, C. Antona, and G. B. Fiore. In vitro hemodynamics and valve imaging in passive beating hearts. J. Biomech. 45:1133–1139, 2012.

    Article  Google Scholar 

  25. Modersohn, D., A. Eddicks, C. Grosse-Siestrup, I. Ast, S. Holinski, and W. Konertz. Isolated hemoperfused heart model of slaughterhouse pigs. Int. J. Artif. Organs 24:215–221, 2001.

    Google Scholar 

  26. Ostli, B., J. Vester-Petersen, J. B. Askov, J. L. Honge, R. A. Levine, A. Hagège, S. L. Nielsen, J. M. Hasenkam, H. Nygaard, and M. O. Jensen. In vitro system for measuring chordal force changes following mitral valve patch repair. Cardiovasc. Eng. Technol. 3:263–268, 2012.

    Article  Google Scholar 

  27. Padala, M., B. Cardinau, L. I. Gyoneva, V. H. Thourani, and A. P. Yoganathan. Comparison of artificial neochordae and native chordal transfer in the repair of a flail posterior mitral leaflet: an experimental study. Ann. Thorac. Surg. 95:629–633, 2013.

    Article  Google Scholar 

  28. Padala, M., L. I. Gyoneva, V. H. Thourani, and A. P. Yoganathan. Impact of mitral valve geometry on hemodynamic efficacy of surgical repair in secondary mitral regurgitation. J. Heart Valve Dis. 23:79–87, 2014.

    Google Scholar 

  29. Padala, M., L. I. Gyoneva, and A. P. Yoganathan. Effect of anterior strut chordal transection on the force distribution on the marginal chordae of the mitral valve. J. Thorac. Cardiovasc. Surg. 144:624–633, 2012.

    Article  Google Scholar 

  30. Padala, M., S. N. Powell, L. R. Croft, V. H. Thourani, A. P. Yoganathan, and D. H. Adams. Mitral valve hemodynamics after repair of acute posterior leaflet prolapse: quadrangular resection versus triangular resection versus neochordoplasty. J. Thorac. Cardiovasc. Surg. 138:309–315, 2009.

    Article  Google Scholar 

  31. Padala, M., M. S. Sacks, S. W. Liou, K. Balachandran, Z. He, and A. P. Yoganathan. Mechanics of the mitral valve strut chordae insertion region. J. Biomech. Eng. 132:08100, 2010.

    Article  Google Scholar 

  32. Padala, M., N. V. Vasilyev, J. W. Owen, Jr, J. H. Jimenez, L. P. Dasi, P. J. del Nido, and A. P. Yoganathan. Cleft closure and undersizing annuloplasty improve mitral repair in atrioventricular canal defects. J. Thorac. Cardiovasc. Surg. 136:1243–1249, 2008.

    Article  Google Scholar 

  33. Purser, M. F., A. L. Richards, R. C. Cook, J. A. Osborne, D. R. Cormier, and G. D. Buckner. Evaluation of a shape memory alloy reinforced annuloplasty band for minimally invasive mitral valve repair. Ann. Thorac. Surg. 88:1312–1316, 2009.

    Article  Google Scholar 

  34. Rabbah, J. P. M., B. G. Chism, A. W. Siefert, N. Saikrishnan, E. Veledar, V. H. Thourani, and A. P. Yoganathan. Effects of targeted papillary muscle relocation on mitral leaflet tenting and coaptation. Ann. Thorac. Surg. 95:613–620, 2013.

    Article  Google Scholar 

  35. Rabbah, J. P. M., N. Saikrishnan, A. W. Siefert, A. Santhanakrishnan, and A. P. Yoganathan. Mechanics of healthy and functionally diseased mitral valves: a critical review. J. Biomech. Eng. 135:1–16, 2013.

    Article  Google Scholar 

  36. Rabbah, J. P. M., N. Saikrishnan, and A. P. Yoganathan. A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann. Biomed. Eng. 41:305–315, 2013.

    Article  Google Scholar 

  37. Rabbah, J. P. M., A. W. Siefert, S. F. Bolling, and A. P. Yoganathan. Mitral valve annuloplasty and anterior leaflet augmentation for ischemic mitral regurgitation: quantitative comparison of coaptation and subvalvular tethering. J. Thorac. Cardiovasc. Surg. 2014. doi:10.1016/j.jtcvs.2014.04.008.

    Google Scholar 

  38. Rabbah, J. P. M., A. W. Siefert, E. M. Spinner, N. Saikrishnan, and A. P. Yoganathan. Peak mechanical loads induced in the in vitro edge-to-edge repair of posterior leaflet flail. Ann. Thorac. Surg. 94:1445–1452, 2012.

    Article  Google Scholar 

  39. Rahmani, A., A. Q. Rasmussen, J. L. Honge, B. Ostli, R. A. Levine, A. A. Hagège, H. Nygaard, S. L. Nielsen, and M. O. Jensen. Mitral valve mechanics following leaflet patch augmentation. J. Heart Valve Dis. 22:28–35, 2013.

    Google Scholar 

  40. Rausch, M. K., W. Bothe, J.-P. E. Kvitting, J. C. Sawnson, D. C. Miller, and E. Kuhl. Mitral Valve Annuloplasty. Ann. Biomed. Eng. 40:750–761, 2012.

    Article  Google Scholar 

  41. Richards, A. L., R. C. Cook, G. Bolotin, and G. D. Buckner. A dynamic heart system to facilitate the development of mitral valve repair techniques. Ann. Biomed. Eng. 37:651–660, 2009.

    Article  Google Scholar 

  42. Ritchie, J., J. H. Jimenez, Z. He, M. S. Sacks, and A. P. Yoganathan. The material properties of the native porcine mitral valve chordae tendineae: an in vitro investigation. J. Biomech. Eng. 39:1129–1135, 2006.

    Article  Google Scholar 

  43. Savage, E. B., and S. F. Bolling. Atlas of Mitral Valve Repair. Philadelphia, PA: Lippincott Williams & Wilkins, 2006.

    Google Scholar 

  44. Siefert, A. W., D. A. Icenogle, J. P. M. Rabbah, N. Saikrishnan, J. Rossignac, S. Lerakis, and A. P. Yoganathan. Accuracy of a mitral valve segmentation method using J-splines for real-time 3D echocardiography data. Ann. Biomed. Eng. 41:1258–1268, 2013.

    Article  Google Scholar 

  45. Siefert, A. W., E. Pierce, M. Lee, M. O. Jensen, C. Aoki, S. Takebayashi, J. F. Esmarates, R. C. Gorman, J. H. Gorman, III, and A. P. Yoganathan. Suture forces in undersized mitral annuloplasty: novel device and measurements. Ann. Thorac. Surg. 98:305–309, 2014.

    Article  Google Scholar 

  46. Siefert, A. W., J. P. M. Rabbah, K. J. Koomalsingh, S. A. Touchton, Jr, N. Saikrishnan, J. R. McGarvey, R. C. Gorman, J. H. Gorman, III, and A. P. Yoganathan. In vitro mitral valve simulator mimics systolic valvular function of chronic ischemic mitral regurgitation ovine model. Ann. Thorac. Surg. 95:824–829, 2013.

    Article  Google Scholar 

  47. Siefert, A. W., J. P. M. Rabbah, E. Pierce, K. S. Kunzelman, and A. P. Yoganathan. Quantitative evaluation of annuloplasty on mitral valve chordae tendineae forces to supplement surgical planning model development. Cardiovasc. Eng. Technol. 5:35–43, 2014.

    Article  Google Scholar 

  48. Vismara, R., A. Pavesi, E. Votta, M. Taramasso, F. Maisano, and G. B. Fiore. A pulsatile simulator for the in vitro analysis of the mitral valve with tri-axial papillary muscle displacement. Int. J. Artif. Organs 34:383–391, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the intellectual contributions of Dr. Jean-Pierre Rabbah (Irvine, CA). We would like to additionally acknowledge the images provided by Eric L. Pierce (Atlanta, GA), Dr. Jean-Pierre Rabbah, Dr. Morten Ø. Jensen (Atlanta, GA), and Dr. Manual K. Rausch (Newton, PA), and Dr. Ajit P. Yoganathan (Atlanta, GA).

Disclosures

Dr. Andrew W. Siefert and Ryan Siskey are employees of Exponent Failure Analysis Associates, a scientific and engineering consulting firm. Exponent has been paid fees by companies and suppliers for their consulting services on behalf of such companies and suppliers. No human subjects or vertebrate animals were used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Siefert.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siefert, A.W., Siskey, R.L. Bench Models for Assessing the Mechanics of Mitral Valve Repair and Percutaneous Surgery. Cardiovasc Eng Tech 6, 193–207 (2015). https://doi.org/10.1007/s13239-014-0196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-014-0196-4

Keywords

Navigation